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Abstract: In prior work, we have shown that the underdiag-
nosed problem of state spill remains a barrier to realizing
complex systems that are easy to maintain, evolve, and run
reliably. This paper shares our early experience building The-
seus from scratch, an OS with the guiding principle of elimi-
nating state spill. Theseus takes inspiration from distributed
systems to rethink state management, and leverages Rust lan-
guage features for maximum safety, code reuse, and efficient
isolation. We intend to demonstrate Theseus as a runtime com-
posable OS, in which entities are easily interchangeable and
can evolve independently without reconfiguring or rebooting.

1 Introduction
Large and vastly complex, today’s single-machine operating
systems are entangled webs of components that are nigh im-
possible to decouple, making systems difficult to maintain,
evolve, update safely, and run reliably. This is exacerbated
by the end of Moore’s Law: computer hardware are endur-
ing longer upgrade cycles [2], requiring most evolutionary
advancements to occur solely in software. One exceptional
example is DARPA’s push for software systems that “remain
robust and functional in excess of 100 years” [1], far beyond
the lifespan of their original designers and hardware.

Thus, the need for a disentangled operating system is in-
creasingly pertinent, one that allows every component to
evolve independently, ideally at runtime, without the fear
of failures in one component jeopardizing other components.

Existing systems’ design principles and practices have led
to the exploration of decoupling strategies along many di-
mensions, all of which fall short of disentanglement and
the above goals. First, traditional modularization follows
the separation of concerns principle to decompose a large
monolithic system into smaller, ideally orthogonal entities
containing related functionality. Basic modularity in sys-
tems achieves some software engineering goals, e.g., code
reuse, but often inhibits others by causing tight coupling, as
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evidenced by the substantial efforts required to bring live
updates [5, 8, 30, 41] and fault isolation [23, 43, 44] to
Linux. Second, encapsulation-based decoupling strategies,
e.g., OOP, follow the principle of least knowledge to group
related code and data together into a single entity, with strict
interface boundaries between entities. They achieve better
maintainability and adaptability, but fall prey to the same
problems as above [15, 16, 42]. Third, privilege level separa-
tion, as found in microkernel OSes, aims to decouple entities
by forcing them to run in isolated domains with boundaries
based on privilege levels. Microkernels push kernel function-
ality into userspace server processes to address fault isolation
at a coarse spatial granularity [21], but evolution still remains
difficult [20] because of close collaboration between servers.

Lastly, hardware-driven decoupling strategies leverage
classic distributed systems principles and choose entity
bounds based on the underlying hardware structure, e.g.,
cores, coherence domains, etc. Single-node machines have
now embraced loosely-coupled and heterogeneous process-
ing units, inspiring recent OS works such as Barrelfish [10],
Helios [33], fos [45], and K2 [29] to refactor the kernel to
achieve highly-scalable performance through replicated soft-
ware entities that run (mostly) independently on each core.
While these approaches improve scalability, they do not ad-
dress evolution, runtime flexibility, or fault isolation.

Our Approach: State Spill Freedom

We argue that state spill between OS entities is the root cause
of entanglement within an OS, and has been overlooked by
prior decoupling strategies. State spill is a term that describes
the phenomenon when one software entity’s state undergoes
a lasting change as a result of handling an interaction with
another entity [12]. State spill succinctly identifies the un-
derlying reason why many desirable OS goals are difficult to
realize, including fault isolation and tolerance, live update and
hot-swapping, maintainability, scalability, process migration,
and more. We believe that state spill is a better representation
of such OS challenges than existing terms like coupling, and
that addressing state spill will result in a disentangled design
more so than prioritizing the above decoupling criteria.

In this work, we introduce Theseus1, a new OS written
from scratch in Rust with a unique flat software architecture
and a decoupling strategy guided only by the manifestation of
state spill. At every step of the design, we prioritize remov-
ing state spill or mitigating its effects over any other criteria,

1The Ship of Theseus is a paradoxical thought experiment that asks if every
piece of a wooden ship is replaced over time, is it still the same ship?
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e.g., performance, ease of programming, etc. Theseus’s de-
sign is wholly independent of the underlying hardware and
incorporates principles from distributed systems and RESTful
architectures into a single-node OS. As such, Theseus adheres
to strict design principles, such as stateless communication,
eschewing traditional encapsulation, and more.

The main goal motivating our design of Theseus is to elim-
inate state spill to the fullest extent, leading to runtime com-
posability for all components throughout the OS, including
core kernel entities. Runtime composability in Theseus al-
lows any entity to be individually replaced at runtime without
rebuilding or rebooting the system. This differs from the com-
monplace static composability in existing OSes that permits
reconfiguration only at compile time. We envision that this
property will allow a running instance of Theseus to continu-
ously evolve to meet new demands and use cases.

Our implementation of Theseus is currently in progress us-
ing Rust, a modern systems language that provides high-level
zero-cost abstractions and memory safety while preserving
access to low-level programming constructs. Rust requires no
runtime or garbage collection, making it perfectly suited for
OS development, and its emphasis on shifting runtime com-
plexity to compile time meshes well with Theseus’s design
principles. We show that many of Rust’s language-level fea-
tures, such as the affine types-based ownership system, make
it much easier to realize both classic OS goals like isolation
and new objectives like safety and disentanglement.

In this paper, we share our experience from the early stages
of designing and implementing Theseus, including design
principles and major design decisions.

2 Design Principles
As Theseus’s mission statement is to eliminate state spill
above all else, we briefly explain the concept here. State spill,
denoted S _ D, is a harmful phenomenon in which the state
of a software entity D undergoes a lasting change as a result
of handling an interaction from another entity S [12]. Here,
S represents the source entity (client/caller) that initiates an
interaction with a destination entity D (server/callee), which
handles and responds to that request. State spill does not occur
on every interaction, but only when the changes to entity D’s
internal state persist beyond the end of its interaction with S.

In this section, we set forth the principles that Theseus
must follow to avoid state spill by design, and thus realize
proper disentanglement and runtime composability. In some
cases, these design principles represent a theoretical ideal and
may be impossible to fully achieve; this is addressed in §3.

2.1 Decoupling Entities based on State Spill
The decoupling strategy used in Theseus prioritizes the elimi-
nation of state spill between entities before considering any
other criteria, such as ease of programming, performance, or
matching hardware structure. This leads to rather unortho-
dox modularization principles that are more akin to REST
architectures [18] than classic decomposition advice [36].

Principle of No Encapsulation: One entity should not
harbor states for another entity, i.e., after an interaction from
S→ D, D should not hold the updated state representing that
interaction’s progress. Instead, entity S should hold that state,
but must not be able to understand or modify it. This principle
eschews traditional encapsulation to properly decouple the
two entities whilst between interactions, but preserves infor-
mation hiding (in the sense of concealing data, rather than
concealing implementation details [36]).

Classic encapsulation, which stipulates that related code
and data should be contained together within the same entity,
is generally considered good practice because it discourages
reliance on global states or data in foreign entities. In practice,
this means that all states necessary for an entity to operate
are contained fully within it, and by extension, an entity inter-
nally stores the progress that other entities have made when
interacting with it. Theseus therefore rejects classic encap-
sulation because it directly leads to state spill: when a client
entity S invokes a function in a server entity D, D would have
to internally store the change in progress due to that function
from S, causing state spill from S _ D.

Principle of Stateless Communication: Any interaction
S → D must contain all data required for the destination
entity D to handle that interaction. The logical extension of
this is that D needs access to only the data passed in from S,
and therefore can be restricted to accessing only that and no
other state. Stateless communication does not mean that an
interaction contains no state, but rather that the interaction
itself does not represent progress within a finite-state machine
representation of D. The chief benefit here is no assumption of
prior state, which implies that an entity can be stateless — it
has no need to store intermediary states between interactions
because future interactions will be self-sufficient, thus state
spill cannot occur.

2.2 Composing a Disentangled Operating System
While the above two principles focus on pairwise decoupling,
the next two are concerned with disentanglement among the
large number of entities that compose a full OS.

Principle of Universal, Connectionless Interfaces: All
entities and their functionality should be easily accessible
through a uniform invocation interface, and there should be
no expectation of an interface’s ongoing availability. Uni-
form accessibility will facilitate entity interchangeability and
smooth integration of existing interfaces with new ones. This
is inspired by RESTful architectures [18] and is reminiscent
of how web interfaces allow users to explore available content
and temporarily cache links.

Principle of Pattern Reuse: Common recurring OS de-
sign patterns, such as multiplexers, indirection layers, and
dispatchers, should be implemented only once and reused
throughout the OS, lowering development risk when adding
new features that match such patterns. Instantiating a known-
safe pattern into a specific entity should be possible at compile
time, and the pattern must enforce the absence of state spill



task 
mgmt

nano-core

kern
el 

cons
ole

input event 
mux

key
boar

d 
indir
ecti
on 

laye
r

s
c
h
e
d
u
l
e
r

CFQ
policy

FCFS
policy

RR
policy

mouse
indirection layer

VGA indirection 
layer

graphics mux

filesystem

PIC 
IRQ

PIT clock 
IRQ

event dispatcher

syscall 
dispatcher

sysc
all 

indir
ecti
on 

laye
r

heap 
allocator

frame 
allocatorstack 

allocator

userspace
processes

PIC 
IRQ

s
c
h
e
d
u
l
e
r

filesystem

PIC 
IRQ

PIC 
IRQ

filesyst
em

fil
e
s
y
st
e
m

(a)  Monolithic Kernel (b)  Microkernel OS (c)  Theseus Kernel

module

submodule

entanglement 
via state spill

s
c
h
e
d
u
l
e
r

filesyst
em

s
c
h
e
d
ul
er

Figure 1. The architectures of (a) monolithic kernels and (b) microkernel OSes allow nested module hierarchies, which significantly
complicates the management of each module/submodule, especially in the face of entanglement caused by state spill. Theseus (c) imposes a flat
hierarchy among kernel entities, in which submodules must be extracted into separate first-class module entities with spill-free public interfaces.
Forbidding hierarchical containment reduces module complexity and management logic, facilitating disentanglement and interchangeability.

regardless of custom parameterization. In addition, all enti-
ties, but especially patterns, should be narrow in scope, i.e., a
single entity should only contain one main functionality, not
multiple indivisible features.

3 Theseus Design and Implementation
We now jointly describe the design and implementation of
Theseus, as the nature of the implementation heavily affects
whether our design principles are obeyed. Currently, our im-
plementation is a baseline OS for comparison and state analy-
sis purposes, written from scratch in Rust; we are gradually
transforming it into a spill-free design according to the con-
cepts below, most of which are unimplemented and subject
to change. Henceforth, we use “entity” and “module” inter-
changeably, for reasons given below.

3.1 Flat Module Architecture
Existing monolithic and microkernel OSes have complex hi-
erarchical modular architectures, in which a module may spill
state into another, or a module may contain others as submod-
ules, as depicted in Figure 1(a) and (b). This combination of
state spill and module hierarchy leads to entanglement be-
tween modules. In contrast, Theseus adopts an unconventional
completely flat modular model that disallows all hierarchical
relationships between modules, as shown in Figure 1(c). Thus,
one module cannot contain a submodule nor be the parent
nor child of another module, a mandate that submodules must
be separated out into standalone, first-class modules with
spill-free interfaces to other modules. This invariant pertains
only to module structure and layout, with no bearing on com-
munication: any module can directly interact with any other
module’s public interface (§3.4).

In addition, Theseus’s flat model simplifies module man-
agement by enabling a single root module, the nano-core,
to directly manage every module in the system. The aptly-
named nano-core is extremely minimal in scope: it merely
bootstraps the OS and establishes barebones virtual memory
to allow modules to be loaded and swapped, including itself.
Although a hierarchical model might seem simpler, it would
actually cause extra state spill by shifting management logic
and states into each parent module. This would violate the

principle of universal interfaces by requiring parent modules
and submodules to be treated differently, further increasing
module complexity and hindering interchangeability.

To ensure isolation, information hiding, and interchange-
ability, each Theseus kernel module is implemented as a
distinct Rust crate containing one Rust module, which is then
compiled into an individual binary separate from other mod-
ules. Instead of linking all module binaries together into a
single monolithic object file where they could directly and
freely access each other’s data, we package up each binary as
a separate file in the final OS image, such that the nano-core
can independently load each module. Thus, the Rust crate,
when kept as small as possible, is a clear choice for entity
granularity (§3.1 in [12]) and a clean boundary for module
isolation and replacement.

3.2 State Management without Encapsulation

In keeping with the principle of no encapsulation, modules in
Theseus eschew traditional encapsulation in favor of decou-
pling a module’s state, and thus its notion of progress with
other modules, from its entity bounds. After an interaction
from S→ D, instead of the “server” entity D storing the state
of its progress with S, it returns a sealed representation of said
progress to the “client” entity S such that D’s internal state
is not changed. We term this technique opaque exportation
because it preserves information hiding (data privacy), the
true benefit of encapsulation.

Opaque exportation forces the client (S) to assume the
responsibility of maintaining the state of its progress with
server (D). As shown in Figure 2, this goes hand-in-hand with
the principle of stateless communication, because on the next
invocation of D, S must provide the latest exported progress
of D along with its arguments such that D can pick up where
it left off without maintaining that progress state internally.
This is reminiscent of client-side state storage in CuriOS [16]
and session cookies in RESTful Web architectures [13, 25].

Despite inverting encapsulation, Theseus’s code structure is
no more complex nor less comprehensible to developers than
existing Unix-like OSes. At the source level, data structures
and types are still contained in a module with their related
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Figure 2. (a) Traditional encapsulation-based modularization causes
client-server entanglement due to state spill in the server after an
interaction. (b) In Theseus, server entities opaquely export progress
states to their client(s), which avoids state spill in the server, enabling
stateless communication and disentangling the client and server.

functions, but at runtime these states live outside of the mod-
ule. Developers do not manually handle exported states or
transfer them to other modules; they are abstracted away and
managed by the compiler. At first glance, the overhead of
stateless communication sounds high, but Theseus leverages
affine types in Rust to realize zero-copy communication [9]
even between isolated entities, along with caching and shared
mappings. Singularity also exploits linear types for zero-copy
transfer [22], but Theseus can resolve communication to a
function call with less overhead than Singularity channels.

Theseus must cope with state spill that is unavoidable in
the lowest layers of OS abstraction. Entities there, e.g., a
frame allocator or interrupt handler, usually maintain system-
wide states unrelated to any specific client. However, these
states must not hinder an entity’s interchangeability. Thus, in
cases where a server entity has a mix of states relevant and
irrelevant to a given client, we can partition the entity’s state
into two parts: (i) a minimal representation of state that is
not client-specific, which is opaquely exported as a data blob
shared between all client entities (joint ownership) or placed
into a designated database, and (ii) client-specific states that
represent the server entity’s progress in serving just that client,
which is obviously owned by that client exclusively. We an-
ticipate that this two-part state management technique will
help mitigate the effects of state spill in such an entity, thus
preserving its runtime composability.

3.3 Software-only Safety and Isolation
Theseus utilizes Rust’s memory safety guarantees to achieve
data and fault isolation between modules. It also implements
standard MMU-based virtual address space isolation for two
reasons: (i) in order to demonstrate the feasibility of im-
plementing classic low-level OS core features like virtual
memory (not just higher-level abstractions) in a safe, runtime-
composable fashion, and that (ii) it is unnecessary to restrict
userspace programs to be written in Rust or another safe
language. This is in contrast to related works that have fore-
gone hardware-based isolation in favor of ensuring memory

isolation in software with safe languages, e.g., SPIN [11],
Singularity [22], and more recent works in Rust [27, 34].

Theseus realizes full isolation between modules, with min-
imal overhead similar to a monolithic kernel, through three
techniques: private module namespaces, a variant on Rust’s
safety guarantees, and mandatory robust error handling. First,
private namespaces guarantee that a module can only access
the public interface of another, not its internal data. This is
a benefit of forcing modules to be developed as independent
binaries (§3.1) — they cannot possibly name data outside of
their module bounds because the linker would be unable to
resolve those names. However, despite being unable to name
foreign data, a module could still access that data by random
pointer manipulation, e.g., dereferencing arbitrary addresses
or reinterpreting casts, because modules all share the same
heap, à la monolithic kernels.

Second, Theseus leverages Rust’s compiler-enforced mem-
ory safety guarantees to prevent the above dangerous memory
behavior. The ideal solution would be to forbid all usage of
unsafe code blocks in Rust; however, Theseus cannot simply
issue a blanket ban on unsafe code blocks because many core
kernel features require at least a brief use of instructions that
Rust cannot guarantee are memory safe, e.g., port I/O and
MMIO, register accesses, interrupt configuration, and others.
These instructions do not pose a threat to module isolation,
but they are unsafe in the sense that they could jeopardize
memory safety by crashing the processor (at which point
memory safety no longer matters). Thus, Theseus enforces a
variant of Rust’s safety guarantee via a compiler plug-in that
permits these instructions but disallows all other unsafe code,
following the principle of least privilege.

Third, Theseus forces each module to fully handle er-
rors from other modules and explicitly return errors to its
callers, in accordance with the principle of uniform inter-
faces. All public module interface functions must employ
Rust’s Option or Result type to return errors instead of
panicking, making it easier to bolster a given module against
foreign failures. By disallowing Rust to panic, Theseus pre-
vents language-level faults in one module from aborting the
entire OS, which is the default panic behavior in bare-metal
Rust environments (see §4).

We note that Theseus cannot use existing language-based
isolation mechanisms because they isolate only kernel exten-
sions via carte blanche restrictions on unsafe code [11], which
core kernel features require. This includes Software-Isolated
Processes (SIPs) in Singularity [22], which are much coarser-
grained than Theseus modules and cannot contain any unsafe
code, preventing them from implementing core kernel func-
tionality. Other non-software isolation approaches, such as
microkernels that run modules in separate address spaces [21]
and VINO’s provisioning of dedicated heaps and stacks per
“graft” (module) [40], would cause prohibitive overhead in
the face of hundreds of modules.



3.4 Lazy, Stateless Inter-Module Communication
Inter-Module Communication (IMC) in Theseus is conceptu-
ally similar to classic IPC but possesses different behavioral
semantics. Each module exposes its public functionality as a
published interface to allow other modules to interact with it
through a reference to that interface. An interface reference
will usually resolve to a native function call in kernelspace,
but could also result in RPC-style message passing if oc-
curring between hardware-isolated entities (e.g., userspace
services). References to other modules’ published interfaces
are cached locally as Weak pointers that may or may not
dereference to a real interface endpoint; they must be up-
graded to Strong pointers in order to be resolved then used.
Caching these references (and caching in general) technically
constitutes state spill, but can be safely ignored because a
dropped or invalid reference can always be re-obtained. This
is an example of state spill being difficult to remove, but its
negative effect of entanglement being fully mitigated.

As mentioned in §3.3, all functions in Theseus modules are
required to handle and return errors; we exploit this to pro-
vide only connectionless IMC protocols, à la UDP. Explicit
error handling forces higher-level layers to ensure an IMC
message was properly delivered, an application of the end-
to-end argument [39]. To borrow apt terminology from the
microservices literature [28], IMC provides “smart endpoints,
but dumb pipes.” This is in stark contrast with systems that
are permanently bound together at compile/linkage time and
can therefore statically guarantee availability of functions.

In order to facilitate runtime composability, IMC supports
lazy resolution of interface references and lazy automatic
initialization of modules. In fact, lazy evaluation is a general
prerequisite for realizing many of Theseus’s goals, given that
modules may arbitrarily change or become unavailable at
any time. Lazy interface resolution enables modules to be
added and removed on a whim independently of modules
that depend on them. Lazy initialization enables each new
module to be initialized upon first access, and also for it
to lazily initialize the chain of modules that it depends on.
Modules that do not have a client-server software caller model,
e.g., interrupt handler modules, can specify that initialization
routines must be run by the nano-core upon loading.

3.5 Generic, State Spill-free OS Patterns
In accordance with the principle of pattern-based reuse, The-
seus reduces development risk and tedium by offering a li-
brary of generic, known-safe, state spill-free implementations
of common OS design patterns that can be reused across the
system. Our prior work identifies patterns that contribute to or
harbor state spill, such as multiplexers and dispatchers [12];
we plan to prioritize these patterns as near-term future work.

Rust offers a variety of excellent language features that The-
seus leverages to implement generic state spill-free templates.
For example, Theseus can specialize generic patterns at com-
pile time with no added runtime overhead, because Rust uses

monomorphization instead of type erasure. Another example
is Rust’s support for higher-order functions, which grants a
pattern the flexibility to accept closures that are executed in
an assuredly safe and state spill-free environment.

Example: Decoupled, Fault-tolerant Queue (DFQueue)

We demonstrate the benefit of reusable, state spill-free pat-
terns by implementing DFQueue, a generically parameterizable
MPSC queue that employs Rust features to prevent state spill
regardless of producer or consumer behavior. Queues are key
building blocks for inter-entity communication, e.g., pipes,
FIFOs, message queues, signals; however, standard queues
cause state spill in the form of producer-specific data being
held in the consumer, entangling both entities and preventing
a producer from tolerating consumer failures.

By leveraging Rust’s explicit ownership and borrowing
semantics, DFQueue precludes state spill by allowing each pro-
ducer to retain ownership of the data it places onto the queue.
The queue itself is owned by the consumer and contains only
borrowed references to the producer-owned data, thus partly
decoupling it from each producer. We augment the queued
data type with a Completable Rust trait, which along with a
dynamic reference count, enables the producer of the queued
data to determine whether it was successfully handled or if an
error occurred in the consumer. The consumer is forbidden
from popping data off of the queue and can only peek at the
next item, attempt to handle it, and then mark it completed
if successful. This transactional semantic fully disentangles
the producers and consumer and achieves fault tolerance by
ensuring that a queued item either (i) is successfully handled
before being slated for dequeuing, (ii) remains on the queue
after not being completely handled by the consumer, or (iii) is
lost from the queue after a consumer failure but able to be
re-queued by its owning producer.

Furthermore, as DFQueue is built atop a lock-free and
mostly wait-free queue, it can safely be used within interrupt
contexts as well. Although our initial unoptimized implemen-
tation of DFQueue only achieves 37% of the throughput of
Rust’s standard MPSC queue, its producer-side enqueuing
overhead of roughly 85-110 cycles is acceptable even within a
keyboard interrupt handler. This overhead stems from runtime
reference counting, which is unavoidable when providing
guarantees like completion and failure status, but fortunately
does not hinder DFQueue’s scalability to multiple producer
threads. Our initial experiences using DFQueue in Theseus
demonstrate why Rust is a wise choice for implementing safe,
generic abstractions and patterns free from state spill.

4 Experiences with OS Development in Rust
Throughout this paper, we have highlighted many benefits
of using Rust for OS development, including memory safety,
error handling, ownership and borrowing semantics, explicit
lifetimes, higher-order functions, affine types, and monomor-
phization. As previous works have evaluated some pros and
cons of using Rust in an OS kernel [26, 27], we discuss a



different set of salient details about Rust, based on our pre-
liminary experiences developing Theseus.

In general, we have found that Rust makes writing an OS
more convenient and enjoyable, not to mention less error-
prone. Compared to C, the de-facto language for systems
programming, Rust offers myriad high-level language fea-
tures, such as strong typing and type inference, traits and
other OOP concepts, lambdas, expression-style statements,
and other functional programming constructs, all of which
reduce implementation effort. Furthermore, most of these
features can be guaranteed at compile time, further speeding
up the development process and helping to eliminate most
concurrency and memory management bugs.

Theseus makes extensive use of monitor-like data struc-
tures, in which a locking mechanism encapsulates a data
element and forces its lock to be acquired before the inner
data can be accessed. We rely on Rust’s lexical scope-based
lifetimes to guarantee that, for example, the lock protecting
a given element must be held for the entire duration of that
element’s access and modification, and that the locked ele-
ment is guaranteed to no longer be accessible after the lock is
released. We realize this is not a Rust-only feature (Java and
other non-C languages provide monitors), but Rust’s ability to
validate monitor usage as a compile-time invariant is uniquely
useful for OS developers, transforming impossible-to-debug
data races into straightforward compiler errors!

On the other hand, Rust is not without its faults. The al-
locator API is limited to a single global allocator instance,
preventing a kernel from allowing Rust collections types to be
allocated from different memory pools. Lexical scoping is not
perfect; Rust cannot always correctly determine the implicit
lifetimes of the aforementioned data guards, producing con-
fusing compiler errors and necessitating inconvenient lifetime
extensions through local name rebinding. However, as Rust
is a young language, there is potential for the community to
address such issues, hopefully relieving future Rust systems
implementors from these setbacks.

Another difficulty we encountered is the inherent prefer-
ence of Rust developers to overuse panic rather than return-
ing errors; panics are copious in both the core libraries and
third-party crates. As mentioned in §3.3, Theseus must forbid
panic calls in kernelspace to prevent a fault in one module
from bringing down the entire OS. To handle panics in Rust
libraries that we cannot modify, Theseus has to disable Rust’s
unwinding to avoid destroying all states on the call stack and
instead select the do-nothing “abort on panic” behavior. Once
the abort occurs, we pseudo-unwind the stack manually and
revert to the stack frame that invoked the library code, and
then continue execution from that point by forcing that frame
to return an Err or None value that represents said panic
to the caller. This is only possible because we control the
calling conventions used in Theseus and can exploit Rust’s
module-based namespace system to identify the appropriate
stack frame from which to resume execution. This downside

of Rust could be improved by encouraging developers to
stop habitually relying on panic in simple error cases, or by
offering customizable support for no_std panic recovery.

5 Related Work
Previous systems works have tackled some of Theseus’s goals
with complex, ad-hoc solutions, including live update and hot-
swapping [5, 8, 20, 41], and fault isolation and tolerance [21,
24, 43, 44]. Language-level approaches, e.g., Erlang [7], have
also realized hot-swapping and fault tolerance for entities
within their runtime environments. Our overarching approach
in Theseus is to completely rethink state management in core
OS entities with a unique decoupling strategy, and to show
that addressing the underlying problem of state spill will
facilitate the realization of not just one, but all of these goals.

Like Theseus, recent works have also used Rust to realize
safer OSes, e.g., Tock [4] and Redox [3], and even proposed
ways to implement classic kernel abstractions in Rust [27].
While Theseus reaps many of the same benefits, its design phi-
losophy and overall goals of state spill freedom and runtime
composability are categorically different than these systems.

Many works combine reusable components or object frame-
works into an OS, e.g., Flux OSKit [19], THINK [17], and
Taligent [6]. As their configuration is fixed at compile time,
these works do not consider the intricacies of state prop-
agation through different components and the ensuing en-
tanglement at runtime. On the other hand, IMC in Theseus
expands upon the flexible communication interfaces used in
componentized OSes, such as Knit [38] and OpenCom [14],
to realize the principle of universal interfaces.

The microservices architecture [28], in which a large mono-
lithic application is broken up into many small distributed
components that run in isolated containers, has been widely
lauded and adopted by industry [31, 37]. Microservices have
yielded improvements in fault isolation, maintainability, and
scalability [32, 35], and although Theseus was not inspired by
microservices, we acknowledge the similarities in motivation
and structure. However, microservices alone do not address
state spill, and their ad-hoc decoupling strategies and mecha-
nisms for isolation and communication rely on an underlying
OS infrastructure and vary widely across different business
units, leaving little that can be applied to Theseus.

6 Concluding Remarks
This paper establishes the design principles and high-level
implementation details of Theseus, an OS free from state
spill. Our future work entails fully implementing the above
plans and demonstrating the feasibility of Theseus to realize
runtime composability and simplify modular OS evolution.
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