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Abstract
Understanding and managing the propagation of states in
operating systems has become an intractable problem due
to their sheer size and complexity. Despite modularization
efforts, it remains a significant barrier to many contemporary
computing goals: process migration, fault isolation and
tolerance, live update, software virtualization, and more.
Though many previous OS research endeavors have achieved
these goals through ad-hoc, tedious methods, we argue that
they have missed the underlying reason why these goals are
so challenging: state spill.

State spill occurs when a software entity’s state undergoes
lasting changes as a result of a transaction from another entity.
In order to increase awareness of state spill and its harmful
effects, we conduct a thorough study of modern OSes and
contribute a classification of design patterns that cause state
spill. We present STATESPY, an automated tool that leverages
cooperative static and runtime analysis to detect state spill in
real software entities. Guided by STATESPY, we demonstrate
the presence of state spill in 94% of Android system services.
Finally, we analyze the harmful impacts of state spill and
suggest alternative designs and strategies to mitigate them.

1. Introduction
Over the past few decades, operating systems research has
gone to great lengths to achieve a spectrum of advanced com-
puting goals: process migration, fault isolation and tolerance,
live update, hot-swapping, virtualization, security, general
maintainability, and more. Better modularization, in which
related functionality is grouped into bounded entities, is often
touted as the most apt solution for realizing such goals, and it
seems promising from an initial glance. However, we argue
that modularization alone is not enough, and that the effects
of interactions between modules have a more pronounced
impact on these goals, as shown below.

Many efforts towards these goals have been ad-hoc and
platform-specific due to the complex nature of how software

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064205

states change and propagate throughout the system, showing
that modularity is necessary but insufficient. For example,
several process migration works have cited “residual depen-
dencies” that remain on the source system as an obstacle to
post-migration correctness on the target system [38, 55, 34].
Fault isolation and fault tolerance literature has long realized
the undesirable effects of fate sharing among software mod-
ules as well as the difficulty of restoring a process or whole
machine statefully after a failure, due to the sprawl of states
spread among different system components [28, 26, 52, 51].
Live update and hot-swapping research has long sought to
overcome the state maintenance issues and inter-module de-
pendencies that plague their implementations when transi-
tioning from an old to a new version, forcing developers to
write complex state transfer functions [7, 25, 27, 48, 5]. Like-
wise, state management poses a problem to the virtualization
of arbitrary software components, significantly complicat-
ing the multiplexing and isolation logic of the underlying
virtualization layer (e.g., kernel or runtime) [11, 6].

In this paper, our primary contribution is to identify the
problem of state spill as a root cause of these problems and
show that it is the underlying reason why many computing
goals are so difficult to realize, even in the face of proper mod-
ularization. State spill is the act of one software entity’s state
undergoing lasting changes as a result of its interaction with
another entity. For example, if an application interacts with
a system service, causing that service to store application-
relevant states in its memory, then state spill has occurred
from the application to the service. We formally define state
spill and the conditions under which it occurs in §3.

From this cursory explanation, it is apparent that state spill
is a phenomenon that permeates all levels of a software sys-
tem. However, it is relative to the choice of entity granularity:
interactions that cross the boundary of an entity are consid-
ered transactions of interest, but those within a single entity
are not. As an example, if the entity granularity is defined to
be a process, then an IPC call between two processes could
constitute state spill, but a local function call within a process
could not. The definition of state spill is not confined to any
particular entity granularity; entity granularity is a platform-
and goal-specific decision (§3.1). However, in this work, our
analysis centers around entity bounds akin to those of a mod-
ule: an entity consists of a group of related functions and the
data they modify. When analyzing Android system services,
for example, the best entity granularity choice is a Java class.

The second contribution of this work is a manual analysis
of state spill and its detrimental impact on the aforementioned
computing goals across various real-world OSes. We find that



state spill is often a byproduct of applying the locality prin-
ciple to OS design, in that it often stems from design choices
that favor programming convenience or performance over ad-
herence to strict architectural or modularity principles. Based
on these case studies, we establish a classification of state spill
(§4) according to common design patterns: indirection layers,
multiplexers, dispatchers, and inter-entity collaboration.

Our third contribution is the STATESPY tool that auto-
mates the detection of state spill in real systems, and an in-
depth, tool-guided analysis of state spill in Android’s system
service entities. As described in §5, STATESPY employs both
runtime and static analysis techniques that automate the cap-
ture, inspection, and differencing of a software entity’s state,
with current support for Java environments. The runtime anal-
ysis component of STATESPY captures a running entity’s state
by interposing on an entity’s execution paths when handling
transactions invoked by real-world applications. Our key in-
sight for runtime analysis is to leverage existing debugging
frameworks to non-intrusively capture and compare entity
states, a technique that forgoes environment-specific features
and generalizes to any execution environment. The static anal-
ysis component of STATESPY provides relevancy filters to the
runtime component as part of a cooperative feedback loop that
iteratively improves the output of each component. Guided
by STATESPY, our experimental analysis of Android system
services (§6) finds that harmful state spill is both prevalent
and deep: nearly all Android system services have state spill,
and it often occurs in a chain across multiple services.

We discuss how to mitigate the effects of state spill in §7
by rethinking existing software designs patterns and commu-
nication schemes. Modularization is not enough: reducing
the impact of state spill is key to simplifying software com-
ponents and making them amenable to migration, live update,
fault recovery, virtualization, and other computing goals. In
fact, we have shown Android system services can be made
more fault tolerant with state spill mitigation techniques [17].

In summary, we identify and formally define the problem
of state spill in modern OSes, classify its various incarnations,
and provide a tool that assists in the discovery of complex
state spill incarnations. The nature of this work is not to offer
a complete picture of state spill in every OS, but rather to
highlight the existence of state spill as a harmful phenomenon
and emphasize its negative impact on the realization of many
modern computing goals. STATESPY is open-source and
available at [10].

2. Background and System Model
In order to properly define state spill and the conditions under
which it occurs, we first assume a system model with a nested
hierarchy of abstraction (Figure 1). Each layer of abstraction
contains one or more software entities, a generic term that
covers common programming and runtime abstractions, e.g.,
processes, threads, modules, classes, functions. The various
granularities of software entities and how they pertain to state
spill are described further in §3.1.

2.1 Transactions: Inter-Entity Communication
We model all communication between entities using the
notion of transactions, which have IPC-like semantics.

Definition 1. A transaction is the flow of control (and
optionally data) from one software entity to another. The
source entity, or client, initiates the transaction and the
destination entity, or server, receives and handles it, returning
control to the source upon completion.

Transactions can represent procedure calls, system calls,
interrupts, signals, other IPC, and more. The exact incarnation
of a transaction is defined by which entities are involved; for
example, a function call is a transaction from one function
to another function in the same thread; system calls are
transactions from a userspace entity to a kernelspace one;
IPC is a transaction from one process to another. Transactions
have the following explicitly-defined characteristics:

• If a transaction is interrupted (e.g., preempted), it is simply
treated as incomplete until it resumes and returns control.

• If a transaction never completes, such as a call to an
endlessly-looping function that listens for messages, no
future actions from different source entities can be affected
by its changes; thus, it is irrelevant to state spill.

• If a transaction handler fails, e.g., by returning an error, it
is treated the same as a completed successful transaction.

• If a transaction is asynchronous/non-blocking, it is treated
as two separate ones: an initial transaction from the source
to the destination, and a second transaction from the
destination back to the source as a completion event.

We are primarily interested in short-lived transactions that
leave a lasting change on the destination entity, such that the
latter’s future behavior will be affected.

2.2 Quiescence in Software Entities
In assessing state spill, we are interested in the effect of a
single transaction on an entity; thus an entity’s state is only
matters at certain points: before and after a transaction, not
during. We use the concept of quiescence to identify this
condition. Given how communication in our system model is
entirely transaction-based, the quiescence of a software entity
is determined solely by its transaction handling.

Definition 2. Quiescence is the stable condition of an entity
when it has no in-progress, unfinished transactions from
external entities. An entity is dynamic when not quiescent.

This differs from traditional definitions of quiescence,
which typically specify that a given entity must be completely
suspended, sleeping, or absent from all CPU runqueues [48,
53]. Other definitions of quiescence go even further by saying
that an entity cannot be considered quiescent if any of its
functions are on the call stack of any other process [5, 32,
25, 7]. Epoch-based quiescence utilizes an interposition layer
to mediate access to a given entity, ensuring quiescence is
reached once all other entities are finished interacting with
the mediated entity [49, 27].

These interpretations of quiescence are far too strict for our
needs, as they would cause nearly every entity to never reach
quiescence, especially those that execute in the background or
never terminate, e.g., system services and the kernel. While
such definitions cause many event types to prevent quies-
cence, e.g., scheduler preemption, our definition simplifies it



to occur only upon the completion of inter-entity transactions.
This is necessary because, although an event like scheduler
preemption may cause the entity to be non-runnable, that en-
tity may still be in the midst of handling a lengthy transaction
when it is blocked or otherwise taken off the runqueue.

2.3 State of a Software Entity
Informally, state spill occurs when a transaction leads to
lasting changes in the destination entity. Before we formally
define state spill (§3), we must first define what we consider
to be part of a given software entity’s state. As the term
software entity covers a variety of possible incarnations (e.g.,
modules, processes, threads, classes), we consolidate its state
definition into a reduced set of “core state” that all forms have
in common, exclusive of process- or thread-specific states
like the program counter, call stacks, and function frames.

Definition 3. The state of a software entity, denoted E,
consists of the set V of program variables within the entity’s
scope, and the values of those variables.

This definition confines entity state to include only the
information within the entity’s scope, i.e., everything visible
within the entity’s logical bounds. This is a fair, representative
model of real-world OS entities who cannot control nor ac-
cess external state due to permissions and secure information
hiding policies. For example, the scope of a module includes
the local variables in the functions within that module and the
global variables that they access. The scope of a process en-
tity is identical to the scope defined by the program executing
within it, which includes all program variables but excludes
the process control block and other OS state external to the
process. For class object entities, all class member fields are
considered to be in-scope throughout the entire duration of
that class object, in addition to any local variables and public
static members accessible from the current execution point.

Defining software entity state in this way necessarily en-
ables us to treat varied OS components in a consistent way
amenable to formalization, static analysis, and runtime anal-
ysis. Another benefit of this definition is its Markovianness,
i.e., the exclusion of prior input, events, or control flow from
an entity’s state. This allows easy analysis of an entity: only
current contents are inspected, prior condition is disregarded.

Quiescent Entity State

When an entity is quiescent, its state EQ becomes a refine-
ment of entity state E exclusive of temporary states. Formally,
a temporary state is a program variable whose underlying
lifetime [47] does not persist beyond the transaction currently
being handled by the entity. For example, local variables with
automatic lifetimes are temporary states, whereas class mem-
ber fields or global variables in a process are non-temporary.
Only lasting changes that stem from a transaction can present
complex challenges to the aforementioned computing goals.
Changes to temporary states are unimportant and irrelevant to
state spill because they are entity-local and cannot affect the
complex interdependencies and coupling between entities.

Definition 4. The state of a quiescent software entity EQ

consists of the set VQ containing all non-temporary program
variables within the entity’s scope and their values.

Recall that our definition of quiescence allows entities to
reach quiescence quite often — once after every transaction
has completed given that other transactions have not yet
begun — and thus enables us to isolate specific states changed
by a single transaction. This, combined with the elimination
of transient changes, leads to more accurate analyses with
meaningful results: state spill that actually matters.

3. State Spill: A Formal Definition
We now formally define the concept of state spill and describe
the conditions under which it occurs. When a source entity S

initiates a transaction with a destination entity D, the state of D

may undergo a lasting change while handling that transaction.
State spill may be explicit, when data from S is passed to
and stored in D, or implicit, in which no data is passed but
handling the transaction incites a change in D on behalf of S.

Previous works have addressed problems related to state
spill, such as data-flow analysis and taint tracking in systems
software [59, 29, 60] and in Android [8, 18]. In general, these
works focus on tracking the propagation of data throughout a
system, often for privacy purposes, to determine what data
can reach which entities. However, they are not concerned
with the changes to other software entities and the subsequent
effects that stem from said data propagation, which we
have found is an often overlooked yet important occurrence.
Awareness of data movement is a step in the right direction,
but we argue that it is more useful to understand the impact
of that data movement beyond privacy concerns (§8).

Formally, state spill occurs from S _ D if there is a differ-
ence in entity D’s quiescent state after handling a transaction
from S, and the difference was caused by that transaction.

Definition 5. State spill S _ D occurs if EQ
D 6= EQ

D
0, in which

• EQ
D : quiescent state of D before a transaction from S, and

• EQ
D
0: quiescent state of D after completing a transaction.

To determine whether EQ
D = EQ

D
0, one must compare the

non-temporary variables in entity D before and after a given
transaction (Definition 4). Because entity quiescence ignores
internal actions (Definition 2), one must also ignore all
changes from those internal actions in EQ

D and EQ
D
0 and

compare only states that can be modified by entity D’s
handling of that transaction.

Definition 6. Two quiescent entity states are equivalent if
8e 2 VQ0 | e 2 Mt, e 2 VQ ^ valQ(e) = valQ0(e),

in which e is a variable in the entity’s post-transaction set of
(non-temporary) variables, Mt is the set of variables actually
modified by the transaction handling, and val(e) is the value
of variable e. This equivalence is denoted EQ = EQ0.

In some systems, state equivalence testing may be imprac-
tical due to the size or highly dynamic nature of an entity’s
state. Although we have yet to encounter such an entity, an
approximation of state equivalence testing may be more valu-
able than a direct comparison of entity state. For example, a
good litmus test for state spill may be whether an entity S

continues operating successfully after random changes are in-
jected into entity D’s state, without informing S of the change.
We leave these imprecise approximations for future work.
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Figure 1: Entity granularities have a nested hierarchy; state
spill is by definition relative to the chosen granularity. The
module/class-based entity choice shown here allows state spill
only from transactions between those entities (_); interactions
between finer-grained entities (99K) are irrelevant.

3.1 Relative Granularity of State Spill
Based on the above definitions, state spill is relative to both
the spatial granularity of entities and the temporal grouping
of transactions between those entities.

Spatial Granularity of Entities
Because transactions are by definition between two entities,
state spill depends greatly upon the spatial granularity of
the involved entities, i.e., how their bounds are defined. En-
tity granularities range from the highest level of considering
the entire computer as a single entity to the lowest level of
considering each individual function or even basic block as
a fine-grained entity. At the highest granularity level of an
entire computer being a single entity, state spill occurs from
one computer to another via over-the-network transactions;
any interaction between applications within a computer is
irrelevant. Moving down a level, if an entire multi-process
application was considered a single entity, then state spill hap-
pens from one application to another due to inter-application
transactions; any interactions within that application’s pro-
cesses or threads are irrelevant. At the lowest level, in which
each function is considered its own fine-grained entity, trans-
actions between functions (function calls) across the entire
system are eligible to cause state spill, making state spill ubiq-
uitous and uninteresting. Thus, both very high and very low
levels of entity granularity are neither useful nor appropriate
for analysis, not to mention impractical.

The choice of entity granularity for state spill analysis
is both platform-specific and goal-specific. For example, if
one wishes to determine the barriers to process migration in
a Unix-like system, each process should be its own entity
such that state spill would be detected in transactions beyond
a process’s address space. If one wishes to live update a
single function in isolation without having to worry about its
dependencies on other functions, entity granularity should
be set to a single function in order to track inter-function
state spill. For analysis of Android system services (§6), a
class-based entity granularity is more appropriate because
each service is implemented as an OOP class.

In this work, we take the middle ground by choosing a
moderately coarse entity granularity. The coarsest granularity
of an entire computer as one entity has already been studied
and addressed in the form of RESTful software architec-
tures [23] used across web services [39]. In theory, RESTful
design principles ensure that transactions between client and

1 public class SystemService

2 static int sCount ;

3 byte mConfig ;

4 List <Callback > mCallbacks ;

5 int unrelated ;

6
7 public void addCallback (int id ,

8 byte cf , Callback cb) {

9 int b = id;

10 Log. print ("id=" + b);

11 this . mConfig = cf;

12 this . mCallbacks .add(cb );

13 sCount ++;

14 }

Listing 1: System service implemented as an OOP class.

server systems are self-contained and require no pre-existing
state to be held on the server, preventing state spill from the
outset. We choose a finer granularity than whole-computer
entities because state spill in mid-level entities is more rele-
vant to the systems research goals we target. Moreover, this
choice produces a balance of meaningful results, whereas
granularities that are overly fine or coarse are susceptible to
state spill in all interactions or no interactions, respectively.

Temporal Granularity of Transactions
In addition to the spatial dimension of entity granularity,
state spill also has a temporal dimension: the granularity of a
transaction. Temporal transaction granularity specifies how
many consecutive interactions between two given entities are
grouped together into a single logical transaction. The exact
form of a transaction is orthogonal to its temporal granularity
and dictated solely by entity granularity, e.g., a transaction
between two function entities must be a function call.

While this work focuses on analyzing one transaction at
a time, it can be useful to collapse multiple transactions into
one. When analyzing state spill in a common procedure of
three transactions in series, e.g., connecting to and configur-
ing updates from a sensor service, there is no point determin-
ing which states are spilled during the first two intermediate
transactions. In fact, doing so during a tool-based analysis
would create unnecessary overhead, especially considering
that state spill only needs to be analyzed with respect to two
quiescent points (Definition 5), not an individual transaction.
Thus, a transaction’s temporal granularity is another dimen-
sion to consider when understanding and detecting state spill.

3.2 Simple Example of State Spill
We use the sample system service of Listing 1 to illustrate
specifically how applications might spill state into system
service entities. In this example, the service is implemented
in an object-oriented language; thus, its entity granularity is
a class, its bounds include all class member fields, and its
public methods are transaction handlers/entry points. Such
services are typically instantiated once upon boot and never
terminate, with much longer lifetimes than applications.

When an application initiates an addCallback transac-
tion, both the cf and cb parameters cause explicit state
spill by changing mConfig and mCallbacks respectively,
whose lifetimes persist beyond that transaction. In contrast,
although the id parameter is passed into addCallback, it
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Figure 2: Common design patterns that cause state spill (_).
(a) Indirection Layers cause state spill when converting be-
tween two representations of data/commands; (b) Multiplexers
harbor state spill when serving multiple clients; (c) Dispatchers
harbor state spill by holding registered callbacks (cb) for mes-
sage/event delivery. (d) Inter-entity collaboration causes state
spill when non-orthogonal states must be synchronized.

does not constitute state spill because its lifetime is tempo-
rary (function-local) and ends when the transaction returns.
The sCount field has a lifetime tied to the lifetime of the
underlying runtime (JVM) instance, potentially longer than
that of the SystemService entity; sCount is an example of
implicit state spill because its value changes as a result of the
transaction despite not being directly passed from the appli-
cation. Finally, the unrelated field is not actually modified
by the addCallback transaction, (unrelated /2 Mt); thus,
although its value may have been changed by another thread
during the transaction, it is excluded from quiescent state
equivalence testing and cannot contribute to state spill.

Formally, the state of the SystemService entity D at
several execution points in time is as follows:

1. Upon service boot but before any transaction occurs, D is
initially quiescent, thus EQ

D consists of VD =
�

sCount,
mConfig, mCallbacks

 
with values

⌦
0, 0, {?}

↵
.

2. D becomes dynamic in L9, and by L10 has additional
temporary variables

�
id, cf, cb, b

 
.

3. After L13, D returns to quiescence, thus EQ
D
0 contains

VQ
D
0 =

�
sCount, mConfig, mCallbacks

 
, whose corre-

sponding variable contents are
⌦
1, cf, {cb}

↵
.

Therefore, because EQ
D
0 6= EQ

D , Definition 5 stipulates that
the addCallback transaction causes state spill from S _ D.

4. Classification of State Spill and its
Harmful Effects

We now take a broad look at various real-world operating
systems to demonstrate the ubiquity and harmful effects
(boldfaced) of state spill therein. In doing so, we contribute
a classification of state spill based on various entity design
patterns: indirection layers, multiplexers, dispatchers, and
inter-entity collaboration. Although other forms exist, these
concisely represent the vast majority of state spill in OS
entities and their roles in causing it. In §7, we discuss spill-
free alternatives to these designs.

4.1 State Spill in Indirection Layers
The first form of state spill, depicted in Figure 2(a), occurs
when a client interacts with an indirection layer to access a
lower-level resource. Indirection Layers can be any horizon-
tal slice in a multi-layered software stack: for example, an

application (client) can use APIs provided by a library (indi-
rection layer); a system service (client) can access I/O devices
through the kernel driver (indirection layer). The indirection
layer translates client requests expressed at a high level of
abstraction into lower-level commands that the underlying
resource can understand; in doing so, the indirection layer
harbors spilled state from the client entity, e.g., information
about how the client is utilizing the resource. Developers of
indirection layer entities necessarily choose to store client-
specific information internally to (i) ensure that access privi-
leges are upheld, and (ii) maintain a notion of client progress
during a series of client-resource translations.

Common Abstractions: Processes and VFS

The process abstraction is an indirection layer that allows
unprivileged user programs to safely access the CPU without
understanding the underlying hardware. Most monolithic
OSes implement the process abstraction via an indirection
layer in the kernel and maintain per-process metadata as
a single list therein, e.g., Linux kernel’s task struct list.
The user program running atop and utilizing the process
abstraction will cause state spill beyond its bounds into
task struct’s member variables and others within the
kernel’s process management subsystem.

This state spill stems from a design choice to have all
process-related information in a convenient centralized place,
and also from the need to protect such information from
malicious userspace tampering. However, it renders process

migration infeasible because one must track and retrieve
states spilled from a process into other OS entities (the
kernel and system daemons), a complex and impossible task.
This is a recognized problem previously termed “residual
dependencies” [34, 55], but is a symptom of state spill. As
discussed in the next section, microkernel OSes also harbor
similar state spill, but within userspace servers that implement
indirection layers rather than the kernel.

The Virtual File System (VFS) indirection layer, present
in monolithic and microkernel OSes alike, provides a simple
file abstraction for user processes (clients) to access low-level
device drivers (resources). We take Linux’s VFS implemen-
tation and I2C driver as an example. The VFS entity is itself
an indirection layer, whose state includes a struct file

that manages and holds references to the underlying I2C de-
vice and driver as part of its private data element. When
a client process issues an ioctl transaction on that VFS en-
tity’s device file, the kernel routes the operation from the VFS
layer to the corresponding driver’s ioctl implementation,
i2cdev ioctl in the case of I2C. Because it was initiated
by VFS, this driver holds a reference to the VFS’s I2C file

structure and its functions can directly modify VFS states,
e.g., file mode, readahead, mutex, ownership permissions;
other operations like read and write behave similarly and
modify other VFS entity states, e.g., its file pos offset.

This is a deceptive form of implicit state spill: the VFS
layer appears to not modify its own state or keep data passed
in from userspace, but rather its state is modified transparently
by the driver entity hidden beneath the abstraction provider
itself. This design choice was made for convenience and
efficiency reasons: since the VFS and driver entities share a



single kernel address space, it is easier for developers and
faster to directly update the elements in the VFS’s file

structure using shared references rather than explicit message
passing. Similar state spill exists in the userspace VFS servers
of microkernel OSes like MINIX 3, Genode, and others.

Microkernel Userspace Servers

Microkernel-based OSes like MINIX and seL4 move the vast
majority of OS functionality into userspace servers in favor of
a very small kernel core. These servers are often indirection
layers that act as middlemen between applications and the
microkernel, e.g., converting POSIX API calls into MINIX-
specific functions that their microkernel can handle. This
software architecture results in state spill that directly im-
pedes live update and hot-swapping of microkernel servers,
as evidenced by the MINIX authors’ tedious, ad-hoc under-
taking to enable live updates in MINIX 3 [25].

Besides abstraction levels, userspace servers also bridge
privilege levels: userspace servers have more privileges than
applications but less than the kernel, e.g., they cannot do con-
text switches or top-half interrupt handlers. The introduction
of different privilege and abstraction levels is a design choice
that prioritizes modularity and the minimization of kernel size
at the cost of high susceptibility to state spill. For example,
MINIX 3’s userspace scheduler SCHED [50] is an indirection
layer that sits between user processes and the microkernel’s
context switch mechanism to control the system’s scheduling
policy. SCHED lacks context switch privileges, so it simply
chooses the next target process to be run and relies upon
the kernel’s context switching mechanism (sys schedctl).
The sys schedctl system call copies process-relevant pa-
rameters into the kernel’s list of struct procs — a prime
example of state spill — before actually triggering the context
switch. Spilled states include the target process’s scheduling
flags, endpoint, parent endpoint, priority, timeslice quantum,
CPU affinity mask, schedule-enqueue bit, and more.

The same userspace-policy kernelspace-mechanism struc-
ture is used for many other MINIX 3 servers, such as the
process manager (§4.2), virtual file system, memory manager,
and reincarnation server, all of which cause similar forms
of state spill. We omit their details for brevity’s sake, but
such state spill is a direct obstacle to realizing live update,
hot-swapping, and virtualization of said userspace servers.

4.2 State Spill when Multiplexing
The second form of state spill commonly occurs when an en-
tity acts as a multiplexer that allows multiple clients to access
a single underlying resource by means of sharing it tempo-
rally or spatially. As depicted in Figure 2(b), a multiplexer
entity causes state spill by harboring states that correspond to
each client’s individual interactions with the resource. This
form of state spill typically occurs out of necessity, in that the
multiplexing entity must maintain contextual data about its
users in order to properly partition and manage its resource.
For example, a device driver holds a representation of each
process’s usage of its hardware peripheral; the virtual mem-
ory subsystem contains mappings and other allocation details
to multiplex applications’ accesses to physical memory.

Process Management
Process Management (PM) entities temporally multiplex
access to the underlying CPU (resource) among multiple
user processes (clients). They maintain metadata about every
client process in order to monitor and control them, e.g., de-
ciding when and what to run. This process-specific metadata
is a prime example of state spill that exists across many OS
designs and negatively impacts the computing goals below.

For example, when one process creates another via fork,
the PM multiplexer creates a set of data structures to represent
that new process’s state, a form of implicit state spill. In
monolithic OSes like Linux, this spill occurs from a process
to the kernel’s PM subsystem; in microkernel OSes like
MINIX 3, this spill occurs from a process to the userspace PM
server. In addition to process creation, other PM actions cause
state spill; as processes execute and interact with peripherals
and other entities, the PM entities in userspace servers or
in the kernel must update their process tables accordingly
to reflect the process’s new condition. For example, when
a process accesses an I/O device by invoking the driver’s
read() system call, the device driver may block that process
by setting a flag in its process table entry while fetching the
requested data, causing convoluted state spill from the client
process to the PM multiplexer via the driver.

Not only does state spill in multiplexers induce the afore-
mentioned residual dependency problem that hampers pro-
cess migration (§4.1), but it also breaks fault isolation guar-
antees by inextricably tying the states of its client entities
together in a single entity, causing fate sharing. That is, if
one process causes corruption or faults in the PM server,
other processes will also be affected. On a related note, fault

tolerance in multiplexers is impossible in the face of state
spill: restoring a failed server instance on behalf of one client
process may be successful, but it will fatally disrupt any other
clients using that server due to the unexpected absence or
change of server-side states [11]. In fact, this is true for most
indirection layers and multiplexers, not just PM entities.

The architectural philosophy of monolithic and microker-
nel OSes may necessitate such state spill, but some experi-
mental OSes reduce it with unique approaches. Genode [1]
uses a hierarchical PM technique in which an entity that cre-
ates a process maintains metadata and control over that new
process. This does reduce the extent of state spill into PM
entities, but does not fully decouple the creator or its created
process from said PM entities.

Window Management
While the above PM multiplexers are temporal, window man-
agement (WM) systems are spatial multiplexers of graph-
ical resources like framebuffers. Client applications create
and manipulate their view contents by submitting requests
that contain application-specific state to the WM multiplexer,
which assigns a region of the screen/framebuffer resource
to that application. The state stored in the WM entity when
handling an application’s request constitutes state spill from
application to WM entity. WM entities also harbor explicit
state spill when receiving configuration data and window con-
tent from the applications, which they store directly instead
of allowing applications control over their own data.



The X window system [45], though designed as loosely-
coupled modules, harbors such state spill among various
multiplexer components. One example is the X server, an
entity that multiplexes the local keyboard, mouse, and display
resources between many client applications, storing client-
specific information in the server entity when a given client
requests window creation or content display. Other actions
handled by the X server include centralized reparenting of
windows and caching of offscreen graphics (for context
menus and transient pop-up windows) to avoid client-server
round trips; these actions require states from application
requests to be kept in the X server entity’s local storage,
necessarily causing state spill from applications into the
X server multiplexer. Another X component that causes
state spill is its window manager, e.g., Compiz, KWin, a
multiplexer that maintains Z-depth and other layout data
on behalf of each application window in order to properly
position windows relative to one another.

Nitpicker, the atypical WM multiplexer in Genode [21],
forces each client to take ownership of its private views and
buffers in an effort to improve inter-client security. Nitpicker
then accesses these client buffers via shared memory map-
pings, only upon an explicit client request. This reduces state
spill by allowing clients to allocate and manage their own
view buffers, but still harbors some spilled states in the form
per-client metadata: depth layering information, thumbnails
of each view, keyboard shortcuts, etc.

In WM multiplexers, as with PM multiplexers above, state
spill violates fault isolation, which makes hot-swapping and
live update exceedingly difficult because the separate enti-
ties (e.g., client and X server) cannot be updated in isolation
or swapped independently. Updating multiple separate en-
tities atomically is a requirement for consistency — many
live update works [7, 25, 27, 48, 5] devote the bulk of their
efforts to determining quiescence and accommodating states
distributed across multiple entities — but is practically in-
feasible for windowing systems with many tightly-coupled
components. State spill in WMs does not significantly com-
plicate process migration because a WM entity will likely
need to reconstruct an application’s graphical window and dis-
played content on the new target machine post-migration. For
security, state spill in WM multiplexers is particularly harm-
ful because private content may be revealed to other client
windows via the shared multiplexer medium. Due to spilled
states stored communally in the multiplexer entity, malicious
X client applications may be capable of tampering with other
windows, injecting false keystrokes or commandeering them
for keylogging purposes, or stealing the contents of shared
buffers (e.g., clipboard data), and more [4]. A crafted request
from an X client can even cause the X server to overwrite
arbitrary memory of window buffers spilled into its multi-
plexer entity [4], causing arbitrary code execution or a denial
of service for clients reliant upon those buffers.

4.3 State Spill in in Dispatchers
The third form of state spill arises in dispatchers that allow
client entities to register callbacks in order to receive events
or messages from a sending entity, as depicted in Figure 2(c).
For example, an application that needs to wait for a particular

event may register a callback with the daemon or kernel
that receives the event; this is very common in event-driven
programming models. Dispatchers necessarily cause state
spill by holding client-provided callback references in order
to properly route communication between entities. In fact,
this frequently appears as a subcomponent of other patterns;
for example, the X server (client) registers callbacks in the
kernel’s I/O driver (multiplexer) to receive HID events.

In many IPC implementations, dispatchers cause state
spill; for example, System V IPC dispatcher entities in the
kernel maintain ipc perm keys mapped to external reference
IDs and synchronize msgque vectors and task struct IPC
status bytes. Unix domain sockets, inotify, and d-bus subsys-
tems are similar. Although signals do not necessarily require
callback registration, the Linux kernel’s signal dispatcher can
cause state spill when, for example, the signal blocked mask
or sigaction array is changed in a given process’s task de-
scriptor, or a signaled process is blocked. Finally, mutexes
and locking features can also contribute to state spill; for
example, the semaphore implementation in MINIX 3 is a
dispatcher entity that implements mutex by adding references
to the waiting processes in the PM multiplexer’s process ta-
ble, such that it can dispatch mutex release events to those
waiting processes. These references, although necessary, do
constitute state spill when a process utilizes semaphores.

In the Swift system [14], a lower-layer entity (sender) is
able to invoke a procedure in a higher-layer entity (client)
using the upcall mechanism offered by an intermediate
entity (dispatcher). State spill occurs because the higher-layer
entity must downcall into the dispatcher to register itself
such that future upcalls can deliver the correct execution
context for the higher-layer entity. Furthermore, because key
procedures in the lower layers of the Swift system rely on
the correct implementation of higher-layer procedures, à la
polymorphism, those procedures tend to access common data
across a “vertical stripe” spanning several layers.

The author of Swift recognized this issue and attempted
to rectify it by mandating that all client-facing common data
be unlocked and consistent before an upcall; however, this
guarantee was difficult to implement. Any data in this vertical
stripe not protected by mutexes contributes to state spill,
resulting in interdependent coupling between layered entities,
a direct challenge to fault isolation, fault tolerance, and
maintainability. In fact, this problem and other symptoms
of state spill in upcall mechanisms, such as unpredictable
control flow hazards, are barriers to proper security; hence,
dispatchers supporting arbitrary upcalls to userspace were
never accepted into the mainline Linux kernel [9, 2].

4.4 State Spill due to Inter-Entity Collaboration
Finally, the fourth form of state spill occurs when multiple en-
tities communicate with each other to ensure correctness and
consistency in their view of the OS, as depicted in Figure 2(d).
This stems from a desire to accomplish separation of con-
cerns, in which a complex OS feature like process creation
is broken up into a series of smaller duties that are each as-
signed to specific entities (usually system services or daemon
processes). On paper, each entity’s responsibilities and states
are orthogonal, leading to a more modular software architec-
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Figure 3: STATESPY employs both runtime and static analysis
in a cooperative feedback loop to accurately detect state spill.

ture; however, in reality, each entity has common states that
are either shared with or dependent upon other entities. The
common information — not necessarily identical replicas —
must therefore be synchronized, causing state spill that harms
maintainability, live update, and more.

For example, MINIX 3 divides such complex OS tasks
among multiple userspace servers, each of which maintains
its own version of key data structures, e.g., process tables, to
fulfill its duties. When an application on MINIX 3 wishes to
set its uid or gid, the PM server is the first to receive and
handle that call. However, the PM’s duties do not extend to the
filesystem, so it must ask the VFS server to complete the file-
related aspects of the call, and then proceed to collaborating
with the memory management (MM) server, SCHED, and so
on; each server has its own version of common data structures
that must be synchronized. This pattern occurs in many other
POSIX calls, e.g., exec, fork, virtual memory functions, and
also in other microkernel OSes and Android. This form of
state spill is particularly insidious because while the user may
anticipate state spill in the transaction target (the PM server),
the synchronization-induced state spill in other entities (VFS,
scheduler, MM) is completely obscured.

5. STATESPY: Automated State Spill Analysis
In order to detect and analyze state spill in real-world sys-
tems, we design and implement STATESPY, a tool suite that
automates the discovery of state spill and assists developers
in understanding the conditions under which state spill can
occur in their entities. Developers simply connect STATE-
SPY to an existing entity running in a real OS and allow it
to execute as normal (ideally with a variety of inputs), after
which results are automatically outputted containing all de-
tected state spill occurrences and the actions that caused them.
STATESPY also accepts as input the source code of an entity
to help limit the scope of analysis and prune false results.

As shown in Figure 3, STATESPY’s runtime analysis
component works cooperatively with the static analysis
component to generate state spill results. Our approach is
related to concolic testing [46] in that it blends symbolic
execution-like static analysis with runtime analysis, but
inverts concolic testing because our results come directly
from the runtime analysis component. As concolic testing
begins from a single real execution trace, it may inadver-
tently eliminate some potential execution paths based on
those initial runtime seed values, causing poor coverage.
However, because STATESPY’s static analysis conservatively
eliminates irrelevant states and not paths, its runtime results
cannot miss state spill instances in any Java code path.

The following sections describe the challenges in design-
ing said joint analysis and the realization of STATESPY itself.
We implemented STATESPY’s runtime analysis and static
analysis in 1643 and 2648 lines of Java code, respectively.
We strive to keep our design OS-agnostic wherever possi-
ble; however, as STATESPY currently targets Android system
services (§6), some aspects are Java-specific. A tool for na-
tive, non-managed systems languages (e.g., C/C++) is easily
realizable using techniques similar to those described below.

5.1 Challenges of State Spill Analysis
In designing a state spill analysis tool, one must address four
main challenges: detecting quiescence in an entity, capturing
an entity’s states with meaningful context, differencing those
states, and filtering out irrelevant results. The first three
challenges are addressed by the runtime analysis component
of STATESPY, the last by static analysis. An additional
challenge stems from the shortcomings inherent in runtime
analysis and static analysis when trying to jointly use both
techniques; this is addressed in §5.4.

Detecting Quiescence
In the general case, it is difficult to determine when an en-
tity is quiescent because quiescence is often specified via
environment-specific conditions. However, our transaction-
based definition of quiescence simplifies this: we only need to
detect transactions incoming to an entity and when those han-
dlers have completed. In Android, this is relatively straight-
forward because transactions between entities have a clear
entry and exit point, due to the strict nature of the Binder IPC
protocol. Thus, STATESPY can simply monitor the entity’s ex-
ecution to pause threads at the beginning of a specified Binder
method (e.g., onTransact), creating a quiescent period. In
other systems, STATESPY can accept developer-defined entry
and exit points to determine what constitutes a transaction.

Capturing a Software Entity’s State
Capturing the state of an arbitrary software entity remains
a hard problem that revolves around a tradeoff between
genericness and accuracy. State capture approaches fall under
two broad headings: (i) capturing an entity’s underlying
memory contents beneath the runtime environment, or (ii)
capturing its state contents at the language level.

The former approach (i) is generic — no language-level
support, understanding, or modification is necessary — but
requires bridging the gap to recover the semantic knowledge
of those captured memory contents, which remains an open
problem in the forensic science domain. For example, if the
kernel transparently captured a user process’s address space,
it would not know which memory contents represented which
states. Thus, although this approach could support arbitrary
software entities, classifying entity states (or their underlying
memory) as temporary, modification-reachable, or any other
trait would be infeasible, preventing us from determining
whether they contribute to state spill.

The latter approach (ii) is less generic — it only works for
a given language or runtime environment — but preserves
contextual metadata like variable descriptors and type infor-
mation. Meaningful context is vital to understanding and
classifying states in an entity to accurately detect state spill.



Therefore, we adopt a language-level approach that avoids
the gap between state values and their semantic meanings,
allowing STATESPY to preserve states in their original form
for analysis. The challenges in designing language-level state
capture approaches are best evidenced by the following short-
comings of existing approaches.

• Static analysis cannot always deterministically guarantee
whether a given state will change, only that it may poten-
tially change. In addition, its inability to accurately resolve
abstract types or methods prevents the full traversal of all
possible execution paths.

• Record and replay is generally easier to implement than
checkpoint-based state capture, but cannot inspect the
actual contents of changed states, just the actions that
evoked those changes.

• Serialization requires special support from the language
on a per-type basis, which most legacy systems do not
offer, and is infeasible to implement generically.

• Runtime instrumentation requires modifying the run-
time to expose state information, an incredibly complex
approach that risks disrupting the entity’s behavior or even
violating its correctness. Also, any executable code that
is compiled into native or machine binaries will bypass
the runtime, making it impossible to interpose upon that
code even with the proper hooks available. Although run-
time plug-ins allow for this unreliable introspection, many
runtime implementations lack support for standardized
features and hooks that these plug-ins rely on, e.g., An-
droid’s ART/Dalvik runtime.

To overcome these challenges, our key insight is to lever-
age debugging frameworks that already exist in the runtime or
execution environment in order to non-invasively capture en-
tity state (§5.2). Exploiting debugging extensions is a flexible
technique generalizable to nearly all other platforms and sys-
tems, providing access to entity states with the full contextual
information necessary for state spill analysis.

Differencing Captured States
In order to determine whether a transaction has resulted in
state spill, one must difference an entity’s quiescent state
before and after that transaction. This is difficult because
each state must be compared according to its underlying
details, e.g., variable type and size. Essentially, this requires a
full semantic understanding of each state, because comparing
a list of integers is different than comparing two custom
structs. Fortunately, the correct differencing of states goes
hand-in-hand with the proper capture of states above; that is,
utilizing debugging frameworks also provides sufficient state
metadata for STATESPY to conduct proper state comparison.

In addition to the challenge of correct semantic state
comparison, one must address the challenge of representing
captured states in a way that supports arbitrary structure,
circular references, and hierarchical relationships among
states. For this, STATESPY builds a tree-like cyclical digraph
that mirrors the structure of object states in the running
entity (§5.2). With a proper structural representation and
semantic understanding of entity states, we can apply existing

tree comparison algorithms to identify which states changed
during a transaction, i.e., occurrences of state spill.

Filtering Results

Delivering only relevant state spill occurrences is difficult
because there is no ground truth for what actually consti-
tutes state spill, aside from an expert developer’s determi-
nation. Runtime analysis cannot differentiate between states
that were changed as a direct result of the transaction and
states that happened to change during the transaction (e.g., by
background threads), a condition we term modification reach-
ability, derived from Definition 5. This leads to a potential
abundance of false positive results, i.e., when a state changed
during a transaction but not due to that transaction. To rem-
edy this, we rely on static analysis to assess the modification
reachability of all states in an entity, described in §5.3.

5.2 Runtime Analysis Design

STATESPY’s runtime analysis component detects state spill
according to Definition 5: an entity’s state is captured twice,
at quiescent points before and after a transaction, and then
differenced to identify spilled states. To address the first three
challenges above, we leverage language-level debugging
frameworks that can determine if an entity is quiescent, non-
intrusively access its state, and obtain full contextual meta-
data to gain a semantic understanding of all entity states. De-
spite inherent language-specificness, we avoid environment-
specific features — watchpoints are unsupported on many
JVMs like ART/Dalvik — and strive to keep our key de-
sign concepts language-agnostic, such that the core ideas are
portable even though the implementation is not. Utilizing
debugging frameworks does indeed have many advantages:

• All managed language runtimes offer robust debugging
extensions, even those that do not support instrumentation
or specialized plug-ins;

• Introspection via debugging hooks is risk-free and cannot
compromise the correctness of the entity or runtime;

• Debugging support is also available in execution envi-
ronments without an underlying runtime or virtualization
layer, such as native C/C++ processes.

The runtime analysis component of STATESPY is designed
as a standalone application that runs in a separate host run-
time from the target runtime, which contains the entity under
analysis. It builds upon standard debugger hooks, e.g., break-
points, variable inspection, expression evaluation, in order
to pause the target runtime and induce quiescence before
accessing the state contents within. In our Java-specific im-
plementation of STATESPY’s runtime analysis, the software
entity of interest runs in the target JVM runtime and consists
of a Java object, an instance of a Java class. That class con-
tains transaction-handling methods that modify the object’s
states, i.e., its member fields.



The full procedure undertaken by the runtime tool is:

1. Attach to the target JVM process, and wait for quiescence
by establishing breakpoints at the entry of every transac-
tion handler method in the entity object.

2. When an entry breakpoint is hit, induce quiescence by
suspending threads in the target JVM. Then, capture the
full state of the entity object into the host JVM as EQ.

3. Set breakpoints at the exit points of the current transaction
handler method and resume threads in the target JVM.

4. When the exit breakpoint is hit, induce quiescence yet
again by suspending the target JVM’s threads. Capture
the full state of the entity object as EQ0.

5. Disable the exit breakpoints, re-enable all entry break-
points from Step 1, and resume threads in the target JVM.

6. Finally, in the host JVM, compute the difference in pre-
and post-transaction entity state, EQ0 � EQ, which repre-
sents the state spill caused by that transaction.

However, even with debugging frameworks available,
capturing the full state of an entity class object is surprisingly
non-trivial. We cannot simply create a shallow copy or
duplicate the references to the object’s state inside the target
JVM, for two reasons: (i) it would cause the pre-transaction
state values to be overwritten by the post-transaction values,
as the two objects are one in the same and cannot co-exist; (ii)
it violates our guarantee that we will not intrusively modify
the target JVM’s internal states.

Instead, STATESPY must fully explore the entity’s com-
plex object graph, starting at the top-level class definition
and recursively following all of its field references to other
subclass instances. This depth-first exploration continues un-
til a bottom-level primitive object is reached, at which point
a custom tree-based representation of the object graph is
generated in the tool’s memory (host JVM) that mirrors both
the object references and primitive values of the entity in the
target JVM. This tree representation bears several advantages:
it matches developers’ intuition and is amenable to existing
differencing algorithms and visualization tools.

To reduce execution time and storage space, STATESPY
cherry picks which object references or primitive values to
include or exclude. This is accomplished through the mod-
ification reachability whitelist from the static analysis com-
ponent, but can also be manually adjusted by developers. In
addition, STATESPY is aware of an object’s type, semantic
value, and any references to it; this enables construction of
trees with uniquely-identifiable nodes, supporting hierarchi-
cal containment and circular references while avoiding the
redundant capture of already-encountered nodes.

5.3 Static Analysis Design
As previously mentioned, the primary shortcoming of runtime
analysis above is its inability to distinguish between states
that changed during a transaction and states that changed as
a direct result of that transaction, leading to potential false
positives. Therefore, the sole objective of our static analysis
is to address that ambiguity, i.e., to solve the modification
reachability problem. STATESPY’s static analysis produces
a conservative whitelist including only the states that are

or may be modification reachable. This problem is reminis-
cent of taint tracking and data-flow analysis (see §8), but
handles the additional complex case of implicit state spill
that is undetectable by information flow analysis and better
addressed with techniques like symbolic execution. How-
ever, data-flow’s requirements for source/sink identification
and symbolic execution’s term-based representation of object
values are both inappropriate for determining modification
reachability, so we develop our own algorithm.

STATESPY’s static analysis algorithm recursively explores
every instruction of every method reachable from the entry
point of each transaction handler method in the target entity.
Starting with an initial set of variables of interest (VOI), con-
taining the target entity’s non-constant member fields, the
algorithm propagates VOI and variables that have been modi-
fied or aliased to and from every method invocation. We use
the Soot framework [54] to analyze Jimple, a simple inter-
mediate representation of Java, which means that variables
can only be modified when on the left side of an assignment
statement, and VOI can only be aliased when on the left side
of an assignment statement as well.

Effectively, this technique is a form of forward program
slicing [57] that selects and analyzes only the instructions
in that slice, i.e., those capable of modifying any VOI.
However, forward slicing suffers from search space explosion;
to mitigate this, we only track and propagate the modification
or aliasing of VOI, not the propagation of all variables.
To further reduce analysis time, we cache which variables
are modified and aliased by each method; for the sake of
reusability, these are expressed as string literals (e.g., this,
return, param#) instead of actual variable identifiers. Then,
the next time a cached method is encountered, we instantly
know whether the base object, return value, or parameter
values will be modified or aliased by that method.

The full algorithm, given in [10], outputs a per-transaction
list of modification-reachable fields in the target entity, which
is fed into the runtime analysis tool to reduce false positives.

5.4 Bridging the Gap with a Feedback Loop
As previously mentioned, we establish a feedback loop (Fig-
ure 3) between the runtime and static analysis components
of STATESPY to address the shortcomings of each. How-
ever, this introduces a circular dependency: static analysis
alone is unable to fully explore all methods due to ambigu-
ous declared types or multiple candidate implementations
for a given method invocation, so it needs type resolution
information from the runtime component to accurate resolve
these ambiguities; runtime analysis needs resolution requests
and whitelists from the static component. However, runtime
analysis can only resolve types it encounters in real execution,
but does not know which execution paths to explore until the
static component requests mappings for missing types.

To address this catch 22, we break the circular dependency
by synthesizing artificial test cases that force the runtime tool
to traverse an execution path containing the runtime type reso-
lution of the abstract declared type in question, which is then
fed back into the static analysis component. We effectively
bootstrap the static analysis tool with a few type resolution
mappings and the runtime tool with a simple all-included



whitelist, and then iteratively increase the type mappings
set while reducing the whitelist according to modification
reachability. Since all feedback data passed between the com-
ponents does not change across analysis runs, we save this
information persistently for future usage.

5.5 Validating STATESPY’s Limitations
Currently, our STATESPY implementation strives for com-
pleteness over soundness, but guarantees neither. For clarity,
STATESPY is considered complete if it does not omit any
results that are actually state spill (i.e., no false negatives),
and sound if all results it returns are indeed true state spill
instances (i.e., no false positives). We aim to eliminate false
negatives while still minimizing false positives. In this case,
a false positive is a changed state identified as state spill by
our tool that is actually not true state spill, whereas a false
negative is a real case of state spill that our tool missed.

We applied STATESPY to a random sampling of 60 trans-
actions in Android system services and manually verified
the results. We found that STATESPY achieves a false pos-
itive rate under 11% across these 60 transactions, most of
which stems from our immature support for native methods.
Without static analysis, the runtime analysis alone results in a
false positive rate well over 60% for some services, highlight-
ing the necessity of the modification reachability constraint.
Due to the sheer magnitude of transactions in Android and
the lack of ground truth, we are unable to accurately assess
STATESPY’s false negative rate; however, a case study in §6.4
shows false negatives can occasionally occur.

As mentioned above, we conservatively include a state in
the whitelist if static analysis cannot determine whether it is
modification reachable, due to reasons like dynamic dispatch,
unfollowable native code, or opaque external type references,
Based on our experience, we believe that from a developer’s
perspective, determining the legitimacy of a state spill result
is relatively easy, whereas discovering state spill results that
were mistakenly omitted by STATESPY (false negatives) is
practically impossible. Thus, false positives are less harmful
than false negatives, so we prioritize completeness.

6. State Spill in Android
While §4 studied and classified state spill in a broad variety of
OS entities, this section takes a deep dive into Android system
services guided by STATESPY. Our results show that state
spill is a complex, widespread problem that permeates the
vast majority of Android system services and is detrimental
to the aforementioned computing goals.

6.1 Experimental Methodology
Thus far, we have presented examples of state spill on a
per-entity basis, but we now describe state spill on a per-
transaction basis because STATESPY is capable of monitoring
individual transactions. Transaction-oriented results are more
useful to developers looking to isolate causes of state spill in
their entities; knowing that a given entity harbors state spill
is less precise than knowing which transaction caused it.

To obtain a large, representative body of transactions
for STATESPY to analyze, we downloaded 150 Android
applications from various top categories in the Google Play
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Figure 4: A histogram of how many distinct state spill instances
occur within a given service stub. Multiple stubs can exist
within a single system service, but typically only one or two.

store and utilized the monkey [3] UI automation tool to run
each application with hundreds of random yet meaningful
inputs. It is unimportant which applications are run, only
that they invoke a large body of transactions across many
system services, which STATESPY can automatically monitor
for state spill analysis. We believe that analyzing a varied,
real-world set of transactions is preferable to a generated set
of contrived test cases that may be unrealistic.

STATESPY is very easy to use with any Java-based system
and supports Android system services out of the box; it can
automatically detect quiescence, transaction entry points, and
from which application a given transaction originates. Over
96% of services in Android follow the same design structure:
a main service class implements one or more Binder IPC
stub interfaces, which are auto-generated by Android’s build
system from Interface Description Language specifications.
A stub is an abstract class that most services either directly
inherit from or implement as an anonymous inner class;
both variants are detectable by STATESPY. Once a stub
class is located, we simply assign the Binder onTransact()

IPC handler as its entry point and monitor it for incoming
transactions. All data was collected from stock AOSP running
Android Marshmallow 6.0.1 on a Nexus 5 smartphone.

6.2 State Spill is Prevalent in Android
Our holistic analysis of Android system services reveals the
ubiquity and extent of state spill, as depicted in Figure 4.
State spill is so deeply embedded in Android services that
our tool detected no state spill in less than 6% of the 100+
transaction-handling stubs (AIDL interfaces) we analyzed.
We present results on a per-stub basis instead of per-service
for granularity and precision reasons, though most services
only implement a single stub. Though 76% of service stubs
have fewer than 10 distinct spilled states, some of the
larger stubs have far more, which typically scales with the
complexity of the implementing service. A distinct spilled
state refers to a single member field in the service entity that
was changed by a transaction handler.

Some state spill is relatively straightforward but still hin-
ders various computing goals. For example, callbacks and
configuration settings render process migration and virtual-

ization of those services infeasible. STATESPY detected state
spill in Android’s ClipboardService and AlarmManager-

Service (among others) that jeopardizes fault tolerance.
When these services restart after a crash, they no longer func-
tion properly — clipboard copy/paste and alarms cease to



work — and cause user applications to fail mysteriously. If
hardened against state spill, these services can be properly
restored post-failure to preserve application correctness[17].

Other state spill instances are more unexpected and have
complicated implications difficult to observe with manual
inspection alone. For example, a secure application can
prompt the user to input his/her password by issuing the
verifyUnlock transaction to the KeyguardService. At
first glance, one would think that such a simple transaction
is free from state spill; however, STATESPY reveals that the
KeyguardService causes 3 instances of state spill — in
the form of boolean status variables — while handling the
verifyUnlock transaction. This may represent a potential
security issue: after a password prompt sets these boolean
values, a precise timing attack could allow a malicious
application to bypass its own prompt if the original prompt
crashes, because those spilled values remain.

Another adverse effect of state spill is the hidden breakage
of functionality that applications rely on to ensure security.
For example, many banking applications interact with and
spill states into the AlarmManagerService in order to im-
pose a timeout-based automatic logout, which protects the
user’s identity and private information in the event of a stolen
or misplaced device. A security problem arises if that service
fails: the timeout will never occur and the application will not
automatically log out, despite the application being unaware
of the failure and still expecting the timeout to trigger.

To dig deeper into state spill in Android services, we ran-
domly selected 60 service transactions from 21 services (the
same set from §5.5) for manual classification and analysis.
We classified each state spill instance into one or more of the
four categories from §4, based on the semantics of the service
code that causes the spill. These categories are not mutually
exclusive; for example, all callbacks spilled into a dispatcher
service can be considered communication-related, but only
a subset of those are for multiplexing purposes. First, state
spill in indirection layers is the most common (39%) because
many Android services exist solely to provide a simpler high-
level abstraction of a lower-level feature. Second, state spill
in multiplexers is the least common (21%) because most I/O
device multiplexing is implemented in Android’s hardware
abstraction layer (beneath the service layer). Third, state spill
in dispatchers is quite common (36%) because Android of-
fers many avenues of communication between applications
and services, many of which follow a dispatcher-heavy event-
driven programming model. Finally, inter-entity collaboration
is a fairly common cause of state spill (23%) because many
Android services work together to achieve shared goals, ne-
cessitating the tight synchronization described below.

6.3 Primary and Secondary State Spill in Android
Our analysis thus far has focused on understanding state spill
between a pair of entities, from one source to one destination.
Interestingly, we discovered that in addition to such primary
state spill, we also observed secondary state spill in Android
from the original destination service to another service. This
inter-service spill occurs when one service incites change(s)
in both its state and in the state of another service while
handling a transaction.

Definition 7. Secondary state spill occurs when the handling
of one transaction in entity D1 results in state spill from
S _ D1 and also triggers another transaction that spills state
from D1 _ D2. The states spilled from D1 _ D2 may originate
from either D or D1.

We found 52 transactions across 27 system services that
cause secondary state spill, a lower bound. Figure 5 shows a
select subset of these services and depicts only state spill, not
dependence or usage relationships. This graph highlights the
“hot” services that harbor the most state spill, indicating which
ones stand to benefit the most from a software redesign.

As an example of secondary spill, applications that inter-
act with the UiModeManagerService to change the UI will
spill view mode configuration state into that service. That ser-
vice then causes secondary state spill by inciting a change in
both the visibility state of the StatusBarManagerService

and the notification content state of the Notification-

ManagerService. Similar events transpire when an applica-
tion displays a notification via the NotificationManager-

Service, which spills state into the VibratorService and
AudioService. These forms of state spill are serious obsta-
cles to live updating or hot-swapping these services, not to
mention a reduction in maintainability.

6.4 Flux Case Study
To further demonstrate the utility of STATESPY, we compare
its results against Flux’s manual augmentation of Android
system services to support application migration. Flux [55]
requires decorator methods that selectively record and replay
the side effects of a service method (transaction handler),
effectively addressing the problem of state spill in those meth-
ods, as shown below. The authors of Flux shared with us their
full list of decorated methods, which we manually analyzed to
determine the ground truth of state spill in each method. We
developed an instrumentation tool to trace all Binder transac-
tions invoked by a sample set of applications and ran STATE-
SPY on each transaction. To ensure a fair comparison, we
conducted this study using the same version of Android 4.4.2
and the same set of applications used in Flux’s evaluation,
we ignored all graphics-related services because Flux cir-
cumvents the need for migrating graphics service states, and
we ignored the ActivityManagerService because Flux
heavily customizes its behavior for migration purposes.

Our evaluation captured 113 unique Binder transactions
across 39 unique service stubs. We manually analyzed all
113 transactions to evaluate STATESPY’s accuracy and found
1 false positive and 3 false negatives, caused by incomplete
handling of native methods. Of the 113 transaction methods,
26 were supported by Flux decorators, while 87 were not.
Interestingly, 24 of those 26 decorated methods harbor state
spill, highlighting the strong correlation between state spill
in service methods and the need to understand and augment
those service methods (i.e., handle residual dependencies) to
ensure correct post-migration behavior.

In addition, STATESPY detected true state spill in 18 of
these unsupported 87 methods, indicating potentially incor-
rect behavior in a Flux-migrated application. For example,
state spill in the AppWidgetService can cause application
widgets on the homescreen to no longer receive and dis-



Primary spill

 Secondary spill

 User Applications 

KeyguardServiceVibratorService AlarmManagerService UsbService AudioServiceUiModeManagerService

InputManagerService ActivityManagerService

StatusBarManagerService

PowerManagerService

PackageManagerService

HdmiControlService

NotificationManagerService UserManagerService

WindowManagerService

DisplayManagerService

SensorService

Figure 5: A selected subgraph of complex primary and secondary state spill between applications and system services in Android.

play updates from the migrated application. State spill in
two TextServicesManagerService methods could cause
(i) predictive text suggestions to fail when typing, and (ii)
a loss of Binder death notifications, meaning that applica-
tions would not know if the service had failed. The Package-

ManagerService harbors state spill that may result in ap-
plication components (e.g., services, content providers, ac-
tivities) that were enabled/disabled on the source device not
being properly enabled or disabled on the target device post-
migration. Likewise, state spill in the NfcService’s set-

AppCallback() method can cause NFC-reliant migrated
applications to lose communication with the target device’s
NFC radio. While it is of course possible for Flux to add
support for these 18 methods, this case study demonstrates
the utility of the STATESPY tool in identifying transaction
methods and spilled states that hinder application migration.

7. Design Recommendations for State Spill
Our results paint a very pessimistic picture: state spill is preva-
lent and deep in operating systems. Is it possible to eliminate
state spill? Although a complete answer to this question is be-
yond the scope of this paper, we suggest solutions for remov-
ing or reducing the effects of state spill, based on design pat-
tern classification of §4. We combine the discussion of mul-
tiplexers with indirection layers and dispatchers with collab-
oration (communication) because their solutions are related.

7.1 State Spill-free Indirection and Multiplexing
Client-provided Resources: Many client-server entity de-
signs mandate that servers provide resources (e.g., memory
allocation) for clients to request, a pattern across microker-
nel servers and Android services. For example, Android’s
SurfaceFlinger graphics service offers graphics buffers to
each application upon request, constituting state spill.

We argue that the onus of providing memory space for
server operations should be on the client, forcing the client to
own and supply the resource within its entity bounds. Note
that this does not preclude the server entity from setting
permissions for that resource, e.g., a read-only memory region
in the client’s address space that the server can modify. This
pattern vastly reduces or removes state spill because no state
is stored or changed in the server; thus, no matter what
one client requests, the server cannot harm or use any other
client’s resources. As mentioned in §4.2, Genode’s Nitpicker
WM [21] follows this pattern by requiring clients to allocate
memory for server-managed view windows, à la CuriOS [16].

Separating Multiplexing from Indirection: Resource
multiplexing functionality typically coexists with indirection

providers in a single entity, e.g., most device drivers,
conflating their responsibilities. We argue that these two
should be separated into physically distinct entities. A
dedicated multiplexer allows the underlying driver entity
to be free from state spill if implemented correctly (e.g.,
using the stateless protocols below). State spill in a dedicated
multiplexer is difficult to solve, but can be vastly reduced
through designs that force client-owned resources (above).
Spooling is a good example of extracting multiplexing
functionality into an independent entity. Multiple client appli-
cations that wish to print documents send them to a spooling
directory (multiplexer), after which only a single printer
driver (indirection layer) accesses the spooled documents
and writes them out to the printer device. While there may be
state spill temporarily during the holding phase, those states
are soon externalized once the driver prints the documents.

Hardening Entity State: States in a software entity are
somewhat ephemeral; their lifetimes are dependent upon the
volatility of their underlying storage allocation, e.g., regis-
ters, memory, or secondary storage. By decoupling a state’s
lifetime from the lifetime of its containing entity, that state
becomes hardened — if the entity is destroyed or recreated,
the hardened state(s) will remain. Thus, once a state is hard-
ened, it no longer contributes to state spill. State hardening is
achieved most easily through externalization, e.g., a filesys-
tem cache hardens state by writing it to disk; other approaches
also exist, such as moving states out of the entity’s address
space. In fact, we have explored retrofitting Android system
services with such a state hardening mechanisms to reduce
the effects of state spill and improve fault tolerance [17]. An-
other example of state hardening is X’s session manager, xsm,
which stores window configuration and organization details
persistently to preserve a user’s windows across logins.

7.2 State Spill-free Communication
Modularity without Interdependence: Modularity often
conflates the separation of concerns with decoupling and
independence, but as we have shown, modularity alone does
not guarantee a reduction in coupling or interdependence,
nor does it preclude state spill. MINIX 3’s servers and other
entities from §4.3 fall victim to this modularity predicament.
In order to reduce state spill, modular entities that have tightly-
coupled dependencies should be avoided in favor of loosely-
coupled ones that communicate over stateless protocols
(below). Although state spill may be viewed as a form of
data and control coupling [36], coupling is merely necessary
but not sufficient for state spill (§8). If interdependence
or coupling is unavoidable, system designers should avoid



replicating states that must be propagated throughout the
system upon synchronization events; instead, states should be
orthogonal. When state replication is required, e.g., caching,
one entity should be able to track the spill of its states into
other entities such that replicas can be updated.

Clean Communication Models: A straightforward way
to reduce state spill is to avoid communication protocols that
rely on prior communication. For example, RESTful commu-
nication [22] used in the web requires stateless protocols, i.e.,
self-sufficient transactions: all information necessary for han-
dling a request must be supplied with that request, alleviating
the web server from storing client-related data that becomes
state spill. We realize that stateless protocols may sometimes
be impractical, especially at lower abstraction levels, as proto-
cols operate at the coarsest possible granularity. Despite this,
there are still valuable takeaways: (i) self-sufficient trans-
actions are preferable, and (ii) client entities should take
responsibility for tracking their own server-side progress.

Additionally, universal broadcast mechanisms can reduce
state spill by treating each client equally, obviating the need
for a server to maintain client-specific state. For example,
Lamport’s bakery algorithm [30] allows a server to avoid
storing a client queue by assigning each client a number
and then calling them one by one for access. This design is
clearly beneficial for reducing state spill in dispatchers and is
applicable to publisher-subscriber models as well.

8. Related Work
Although we are the first to identify and study the problem
of state spill to the best of our knowledge, many prior
works have recognized its challenges but failed to identify it
specifically. Instead, they often go to great lengths to treat or
circumvent the symptoms of state spill. As the above sections
deeply covered such works, we now focus on works that
address phenomena related to but different than state spill.

Modularity: As state spill occurs between two entities or
modules, it is clear that modularity is a prerequisite, not a so-
lution, for state spill. Therefore, efforts toward improving OS
modularity, e.g., Fluke OSKit [24], Knit [42], THINK [20],
and OpenCom [15], do not by themselves reduce state spill.
Our work opens the door to investigating a special form of
modularity where no state spill occurs between modules.

Module Coupling: On a related note, software engi-
neering works have studied and classified various forms
of coupling and dependency interactions between mod-
ules [36, 44, 58, 33, 43]. Although state spill often falls into
one of the six types of data and control coupling in [36],
coupling is concerned with the transfer of data and control
between entities, while state spill measures its lasting effects;
thus, coupling is necessary but not sufficient for state spill to
occur. For example, a parameter that only affects temporary
variables, such as int b on L9 of Listing 1, causes coupling
but not state spill; thus, it has no lasting effect on the entity
and does not impact the aforementioned computing goals.

Information Flow: State spill is related to taint tracking
and other information flow control techniques, well-studied
topics in systems software [59, 29, 60] and more recently
Android [8, 18]. While these works use similar detection
techniques as STATESPY, they are primarily concerned with

the security/privacy implications of data propagating through
a system and leaking from a flawed entity, not whether
that data induces an impactful change in the entities to
which it propagates. Other works explore the bigger picture
of how interactions between multiple entities (Android
components) can cause security vulnerabilities [13, 35, 56].
These tools do not identify state spill, but are complementary
to STATESPY and could improve its scope by revealing a
finer-grained, more detailed chain of interactions between
source, intermediary, and destination entities.

Designs that may reduce state spill: Without explicitly
recognizing the problem of state spill, many have sought
to compartmentalize important states in applications, e.g.,
Microreboot [12], and in OS components, e.g., CuriOS [16]
and Barrelfish/DC [61]. These designs may unknowingly
reduce state spill but are not easily applicable to existing
large-scale OSes like Android. Library OSes allow user
applications to specify or provide their own implementation
of a given service or OS feature for individual use [19, 41],
potentially reducing state spill. However, a private service
per application is inefficient, and once that custom service
implementation is utilized by other applications, it becomes
susceptible to the same state spill as other OS designs. Simi-
larly, the Unikernel design philosophy packages applications,
services, and the kernel into a single sealed appliance [31],
bypassing state spill entirely because everything becomes
a single coarse-grained entity. However, this design renders
the aforementioned computing goals either very difficult or
entirely impossible due to a lack of software flexibility —
those goals all require loosely coupled, independent, and
replaceable OS entities. As previously mentioned, RESTful
architectures used in web services [40, 39] address state spill
at the highest possible granularity level, but are irrelevant to
computing goals within a single machine. Olsson [37] applied
RESTful principles to a very simple client-side API with
mixed results, focusing more on client-side design aspects
rather than its effects on the server’s state and behavior.

9. Concluding Remarks
In this work, we define and identify state spill as the underly-
ing reason why important computing goals such as process
migration, fault isolation and recovery, live update, and hot-
swapping have been difficulty to realize. We show that im-
portant design patterns in system software are susceptible to
state spill and develop the STATESPY tool to help developers
automatically identify instances of state spill in large-scale
software systems. By applying STATESPY to Android system
services, we show the prevalence and deep nature of state
spill therein. We believe that as software systems grow in
complexity and size, state spill lurks underneath as a bottle-
neck to reliability, security, and scalability. With this work,
we hope to bring state spill to the community’s attention as
an understudied, important phenomenon in software systems.
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