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Abstract
Mobile systems are equipped with a diverse collection of
I/O devices, including cameras, microphones, sensors, and
modems. There exist many novel use cases for allowing an
application on one mobile system to utilize I/O devices from
another. This paper presents Rio, an I/O sharing solution
that supports unmodified applications and exposes all the
functionality of an I/O device for sharing. Rio’s design is
common to many classes of I/O devices, thus significantly
reducing the engineering effort to support new I/O devices.
Our implementation of Rio on Android consists of about
7100 total lines of code and supports four I/O classes with
fewer than 500 class-specific lines of code. Rio also supports
I/O sharing between mobile systems of different form fac-
tors, including smartphones and tablets. We show that Rio
achieves performance close to that of local I/O for audio
devices, sensors, and modem, but suffers noticeable perfor-
mance degradation for camera due to network throughput
limitations between the two systems, which is likely to be
alleviated by emerging wireless standards.

Categories and Subject Descriptors
B.4.2 [Input/Output and Data Communications]: In-
put/Output Devices; C.0 [Computer Systems Organiza-
tion]: General—System architectures; C.2.4 [Computer-
Communication Networks]: Distributed Systems— Clien-
t/Server; K.8.0 [Personal Computing]: General
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1. INTRODUCTION
A user nowadays owns a variety of mobile systems, includ-

ing smartphones, tablets, smart glasses, and smart watches,
each equipped with a plethora of I/O devices, such as cam-
eras, speakers, microphones, sensors, and cellular modems.
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There are many interesting use cases for allowing an applica-
tion running on one mobile system to access I/O devices on
another system, for three fundamental reasons. (i) Mobile
systems can be in different physical locations or orientations.
For example, one can control a smartphone’s high-resolution
camera from a tablet to more easily capture a self-portrait.
(ii) Mobile systems can serve different users. For example,
one can a play music for another user if one’s smartphone
can access the other system’s speaker. (iii) Certain mobile
systems have unique I/O devices due to their distinct form
factors and targeted use cases. For example, a user can make
a phone call from her tablet using the modem and SIM card
in her smartphone.

Unsurprisingly, solutions exist for sharing various I/O de-
vices, e.g., camera [3], speaker [4], and modem (for messag-
ing) [11]. However, these solutions have three fundamental
limitations. First, they do not support unmodified applica-
tions. For example, IP Webcam [3] and MightyText [11] do
not allow existing applications to use a camera or modem
remotely; they only support their own custom applications.
Second, they do not expose all the functionality of an I/O
device for sharing. For example, IP Webcam does not sup-
port remote configuration of all camera parameters, such as
resolution. MightyText supports SMS and MMS from an-
other device, but not phone calls. Finally, existing solutions
are I/O class-specific, requiring significant engineering effort
to support new I/O devices. For example, IP Webcam [3]
can share the camera, but not the modem or sensors.

In this paper, we introduce Rio (Remote I/O), an I/O
sharing solution for mobile systems that overcomes all three
aforementioned limitations. Rio adopts a split-stack I/O
sharing model, in which the I/O stack, i.e., all software lay-
ers from the application to the I/O device, is split between
the two mobile systems at a certain boundary. All commu-
nications that cross this boundary are intercepted on the
mobile system hosting the application and forwarded to the
mobile system with the I/O device, where they are served by
the rest of the I/O stack. Rio uses device files as its bound-
ary of choice. Device files are used in Unix-like OSes, such
as Android and iOS, to abstract many classes of I/O de-
vices, providing an I/O class-agnostic boundary. The device
file boundary supports I/O sharing for unmodified applica-
tions, as it is transparent to the application layer. It also
exposes the full functionality of each I/O device to other
mobile systems by allowing processes in one system to di-
rectly communicate with the device drivers in another. Rio
is not the first system to exploit the device file boundary;
our previous work [22] uses device files as the boundary for



I/O virtualization inside a single system. However, sharing
I/O devices between two physically separate systems engen-
ders a different set of challenges regarding how to properly
exploit this boundary, as elaborated below.

The design and implementation of Rio must address the
following fundamental challenges that stem from the I/O
stack being split across two systems. (i) A process may issue
operations on a device file that require the driver to oper-
ate on the process memory. With I/O sharing, however, the
process and the driver reside in two different mobile systems
with separate physical memories. In Rio, we support cross-
system memory mapping using a distributed shared mem-
ory (DSM) design that supports access to shared pages by
the process, the driver, and the I/O device (through DMA).
We also support cross-system memory copying with collab-
oration from both systems. (ii) Mobile systems typically
communicate through a wireless connection that has a high
round-trip latency compared to the latency between a pro-
cess and driver within the same system. To address this
challenge, we reduce the number of round trips between the
systems due to file operations, memory operations, or DSM
coherence messages. (iii) The connection between mobile
systems can break at any time due to mobility or reliability
issues. This can cause undesirable side-effects in the OSes of
all involved systems. We address this problem by properly
cleaning up the residuals of a remote I/O connection upon
disconnection, switching to a local I/O device of the same
class, if present, or otherwise returning appropriate error
messages to the applications.

We present a prototype implementation of Rio for Android
systems. Our implementation supports four important I/O
classes: camera, audio devices such as speaker and micro-
phone, sensors such as accelerometer, and cellular modem
(for phone calls and SMS). It consists of about 7100 Lines
of Code (LoC), of which less than 500 are specific to I/O
classes. It also supports I/O sharing between heterogeneous
mobile systems, including tablets and smartphones. See [16]
for a video demo of Rio.

We evaluate Rio on Galaxy Nexus smartphones and show
that it supports existing applications, allows remote access
to all I/O device functionality, requires low engineering effort
to support different I/O devices, and achieves performance
close to that of local I/O for audio devices, sensors, and
modem, but suffers noticeable performance degradation for
camera sharing due to Wi-Fi throughput limitation in our
setup. With emerging wireless standards supporting much
higher throughput, we posit that this degradation is likely
to go away in the near future. In addition, we report the
throughput and power consumption for using remote I/O
devices with Rio and show that throughput highly depends
on the I/O device class, and that power consumption is no-
ticeably higher than that of local devices.

2. USE CASES
We envision two categories of use cases for Rio. The first

category, already tested with Rio, consists of those that sim-
ply combine Rio with existing application (§2.1). This cat-
egory is the focus of this paper. However, we envision ap-
plications developed specifically with I/O sharing in mind.
Obviously, such applications do not exist today because I/O
sharing is not commonly available. §2.2 presents some of
such use cases.

2.1 Use Cases Demonstrated with Rio
Multi-system photography: With Rio, one can use a cam-

era application on one mobile system to take a photo with
the camera on another system. This capability can be handy
in various scenarios, especially when taking self-portraits, as
it decouples the camera hardware from the camera viewfinder,
capture button, and settings. Several existing applications
try to assist the user in taking self-portraits using voice
recognition, audio guidance, or face detection [5]. However,
Rio has the advantage in that the user can see the camera
viewfinder up close, comfortably configure the camera set-
tings, and press the capture button whenever ready, even if
the physical camera is dozens of feet away. Alternatively, one
can use the front camera, which typically has lower quality
than the rear-facing one.

Multi-system gaming: Many mobile games require the
user to physically maneuver the mobile system for control.
Tablets provide a large screen for gaming but are bulky to
physically maneuver. Moreover, maneuvers like tilting make
it hard for the user to concentrate on the content of the dis-
play. With Rio, a second mobile system, e.g., a smartphone,
can be used for physical maneuvers while the tablet running
the game remains stationary.

One SIM card, many systems: Despite many efforts [1],
users are still tied to a single SIM card for phone calls or
SMS, mainly because the SIM card is associated with a
unique number. With Rio, the user can make and receive
phone calls and SMS from any of her mobile systems using
the modem and SIM card in her smartphone. For example,
if a user forgets her smartphone at home, she can still receive
phone calls on her tablet at work.

Music sharing: A user might want to allow a friend to
listen to some music via a music subscription application on
her smartphone. With Rio, the user can simply play the
music on her friend’s smartphone speaker.

Multi-system video conferencing: When a user is video
conferencing on her tablet, she can use the speaker or mi-
crophone on her smartphone and move them closer to her
mouth for better audio quality in a noisy environment. Or
she can use the camera on her smart glasses as an external
camera for the tablet to provide a different viewpoint.

2.2 Future Use Cases of Rio
With Rio, new applications can be developed to use the

I/O devices available on another system.
Multi-user gaming: The multi-system gaming use case ex-

plained in the previous subsection combined with modifica-
tions to the application can enable novel forms of multi-user
gaming across mobile systems. For example, two players can
use their smartphones to wirelessly control a racing game on
a single tablet in front of them. The smartphones’ displays
can even show in-game context menus or game controller
keys, similar to those on game consoles, providing a familiar
and traditional gaming experience for users.

Music sharing: If supported by the system software (e.g.,
audio service process in Android (§7)), a user can play the
same music on her and her friend’s smartphones simultane-
ously. With proper application support, the user can even
play two different sound tracks on these two systems at the
same time, much like multi-zone stereo receivers.

Multi-view video conferencing: A video conferencing ap-
plication can be extended to show side-by-side video streams
from the smart glasses and the tablet simultaneously. In this
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Figure 1: Rio splits the I/O stack at the device file boundary. The process that remotely uses the I/O device
resides in the client system and interacts with a virtual device file. The actual device file, device driver, and
I/O device all reside in the server system. Rio forwards file operations between the client and server. The
wireless link can either be through an AP or a device-to-device connection.

fashion, the user can not only share a video stream of her
face with her friend, but she can also share a stream of the
scene in front of her at the same time.

Multi-camera photography: Using the cameras on mul-
tiple mobile systems, one can realize various computational
photography techniques [42]. For example, one can use the
cameras of her smartphone and smart glasses simultaneously
to capture photos with different exposure times in order to
remove motion blur [52], or to increase the temporal/spa-
tial resolution of video by interleaving/merging frames from
both cameras [41, 50]. One can even use the smartphone as
an external flash for the smart glasses camera.

3. DESIGN
We describe the design of Rio, including its architecture

and the guarantees it provides to mobile systems using it.

3.1 Split-Stack Architecture
Rio adopts a split-stack model for I/O sharing between

mobile systems. It intercepts communications at the device
file boundary in the I/O stack on one mobile system and
forwards them to the other system to be executed by the
rest of the I/O stack.

Unix-like OSes, such as Android and iOS, use device files
to abstract many classes of I/O devices. Figure 1(a) shows
the typical I/O stack in Unix-like OSes. The device driver
runs in the kernel, manages the device, and exports the I/O
device functions to user space processes through device files.
A process in the user space then issues file operations on the
device file in order to interact with the device driver. One
advantage of using device files as the I/O sharing boundary
is that they are common to many classes of I/O devices,
reducing the engineering effort required to support various
I/O classes. Moreover, such a boundary is transparent to
the application layer and immediately supports existing ap-
plications. It also exposes all functionality of an I/O device
to other mobile systems by allowing processes to directly
communicate with the driver.

Figure 1(b) depicts how Rio splits the I/O stack. It shows
two mobile systems: the server and the client. The server
system has an I/O device that the client system wishes to
use. Rio creates a virtual device file in the client that cor-
responds to the actual device file in the server. The virtual
device file creates the illusion to the client’s processes that
the I/O device is present locally on the client. To use the

remote I/O device, a process in the client executes file op-
erations on the virtual device file. These file operations are
intercepted by the client stub module, which packs the argu-
ments of each file operation into a packet and sends it to the
server stub module. The server stub unpacks the arguments
and executes the file operation on the actual device file. It
then sends back the return values of the file operation to the
client stub, which returns them to the process. Note that
Figure 1(b) only shows one client using a single I/O device
from a single server. The design of Rio, however, allows
a client to use multiple I/O devices from multiple servers.
It also allows multiple clients to use an I/O device from a
server. Moreover, the design allows a system to act as both
a client and a server simultaneously for different devices or
for different systems.

In Rio, the client process is always the initiator of commu-
nications with the server driver. This is because communi-
cations between the process and driver are always initiated
by the process via a file operation. When an I/O device
needs to notify a process of events, the notification is done
using the poll file operation. To wait for an event, a process
issues a blocking poll file operation that blocks in the kernel
(and hence, in the server kernel in Rio) until the event oc-
curs. Or, it periodically issues non-blocking polls to check
for the occurrence of an event.

Some file operations, such as read, write, ioctl, and
mmap, require the driver to operate on the process memory.
mmap requires the driver to map some memory pages into the
process address space. For this, Rio uses a DSM design that
supports access to shared pages by the client process as well
as the server driver and device (through DMA) (§4.1). The
other three file operations often ask the driver to copy data
to or from the process memory. The server stub intercepts
the driver’s requests for these copies and services them with
collaboration from the client stub (§4.2).

3.2 Guarantees
Using I/O remotely at the device file boundary impacts

three expected behaviors of file operations: reliability of con-
nection, latency, and trust model. That is, remote I/O in-
troduces the possibility of disconnection between the process
and the driver, adds significant latency to each file operation
due to wireless round trips, and allows processes and drivers
in different trust domains to communicate. Therefore, Rio
provides the following guarantees for the client and server.

First, to avoid undesirable side-effects in the client and
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Figure 2: (a) Memory map for a local I/O device. (b) Cross-system memory map in Rio.

server resulting from an unexpected disconnection, Rio trig-
gers a cleanup in both systems upon detecting a disconnec-
tion. Rio guarantees the server that a disconnection behaves
similar to killing a local process that uses the I/O device.
Rio also guarantees the client will transparently switch to a
local I/O device of the same class, if possible; otherwise, Rio
returns appropriate error messages to the application (§6).

Second, Rio reduces the number of round trips due to file
or memory operations and DSM coherence messages (§5) in
order to reduce latency and improve performance. More-
over, it guarantees that the additional latency of file opera-
tions only impacts the performance, not the correctness, of
I/O devices. Rio can provide this guarantee because most
file operations do not have a time-out threshold, but sim-
ply block until the device driver handles them. poll is the
only file operations for which a time-out can be set by the
process. In §5.4, we explain that poll operations used in
Android for I/O devices we currently support do not use
the poll time-out mechanism. We also explain how Rio can
deal with the poll time-out, if used.

Finally, processes typically trust the device drivers with
which they interact through the device file interface, and
drivers are vulnerable to attacks by processes [15]. To main-
tain the same trust and security model in one mobile sys-
tem, we intend the current design of Rio to be used among
trusted mobile systems only. In §10, we discuss how the
current design can be enhanced to maintain this guarantee
while supporting I/O sharing between untrusted mobile sys-
tems.

4. CROSS-SYSTEM MEMORY SUPPORT
In order to handle file operations, the device driver often

needs to operate on the process memory by executing mem-
ory operations. However, these operations pose a challenge
for Rio because the process and the driver reside in differ-
ent mobile systems with separate physical memories. In this
section, we present our solutions.

There are three types of memory operations. The first one
is map_page, which the driver uses to map system or device
memory pages into the process address space. This memory
operation is used for handling the mmap file operation and
its supporting page_fault operation. Note that the kernel
itself performs the corresponding unmap_page memory op-
eration and not the driver. The other two types of memory
operations are copy_to_user and copy_from_user, which
the driver uses to copy a buffer from the kernel to the pro-

cess memory and vice-versa. These two memory operations
are typically used for handling read, write, and ioctl file
operations.

4.1 Cross-System Memory Map
Cross-system memory map in Rio supports the map_page

memory operation across two mobile systems using Dis-
tributed Shared Memory (DSM) [27, 31, 37, 47, 53] between
them. At the core of Rio’s DSM is a simple write-invalidate
protocol, similar to [53]. The novelty of the DSM in Rio is
that it can support access to the distributed shared memory
pages not only by a process, but also by kernel code, such
as the driver, and also by the device (through DMA).

Figure 2 illustrates the cross-system memory map in Rio.
When intercepting a map_page operation from the server
driver, the server stub notifies the client stub, which then
allocates a shadow memory page in the client (corresponding
to the actual memory page in the server) and maps that
shadow page into the client process address space. The DSM
modules in these two stubs guarantee that the process, the
driver, and the device have consistent views of these pages.
That is, updates to both the actual and shadow pages are
consistently available to the other mobile system.

We choose a write-invalidate protocol in Rio’s DSM for
efficiency. Compared to update protocols that proactively
propagate the updates to other systems [27], invalidate pro-
tocols do so only when the updated data is needed on the
other system. This minimizes the amount of data trans-
mitted between the client and server, and therefore mini-
mizes the resource consumption, e.g., energy, in both sys-
tems. With the invalidate protocol, each memory page can
be in one of three possible states: read-write, read-only, or
invalid. Although the invalidate protocol is the default in
Rio, we can also use an update protocol if it offers perfor-
mance benefits.

We use 4 KB pages (small pages) as the coherence unit
because it is the unit of the map_page memory operation,
meaning the driver can map memory as small as a single
small page into the process address space. When many pages
are updated together, we batch them altogether to improve
performance (§5.3).

To manage a client process’s access to the (shadow) page,
we use the page table permission bits, similar to some ex-
isting DSM solutions [37]. When the shadow page is in the
read-write state, the page table grants the process full ac-
cess permissions to the page, and all of the process’s read



and write instructions execute natively with no extra over-
head. In the read-only state, only write to these pages cause
page faults, while both read and write cause page faults in
the invalid state. Upon a page fault, the client stub triggers
appropriate coherence messages. For a read fault, it fetches
the page from the server. For a write fault, it first fetches
the page if in invalid state, and then sends an invalidation
message to the server.

To manage the server driver’s access to the page, we use
the page table permission bits for kernel memory since the
driver operates in the kernel. However, unlike process mem-
ory that uses small 4 KB pages, certain regions of ker-
nel memory, e.g., the identity-mapped region in Linux, use
larger pages, e.g., 1 MB pages in ARM [23], for better TLB
and memory efficiency. When the driver requests to map
a portion of a large kernel page into the process address
space, the server stub dynamically breaks the large kernel
page into multiple small ones by destroying the old page ta-
ble entries and creating new ones, similar to the technique
used in K2 [38]. With this technique, the server stub can
enforce different protection modes against kernel access at
the granularity of small pages, rather large pages. To mini-
mize the side-effects of using small pages in the kernel, e.g.,
higher TLB contention, the server stub immediately stitches
the small pages back into a single large page when the pages
are unmapped by the process.

To manage the server I/O device’s access to the page
through DMA, the server stub maintains an explicit state
variable for each page, intercepts the driver’s DMA request
to the device, updates the state variable, and triggers ap-
propriate coherence messages. Note that it is not possible
to use page table permission bits for a device’s access to the
page since devices’ DMA operations bypass the page tables.

Rio provides sequential consistency. This is possible for
two reasons. First, the DSM module triggers coherence mes-
sages immediately upon page faults and DMA completion,
and maintains the order of these messages in each system.
Second, processes and drivers use file operations to coordi-
nate their own access to mapped pages.

4.2 Cross-System Copy
Cross-system memory copy in Rio supports copy_from_

user and copy_to_user memory operations between two
mobile systems. We achieve this through collaboration be-
tween the server and client stubs. When intercepting a
copy_from_user or copy_to_user operation from the driver,
the server stub sends a request back to the client stub to
perform the operation. In the case of copy_from_user, the
client stub copies the data from the process memory and
sends it back to the server stub, which copies it into the ker-
nel buffer determined by the driver. In the case of copy_to_
user, the server stub copies and sends the data from the ker-
nel buffer to the client stub, which then copies it to the cor-
responding process memory buffer. Figure 3(b) illustrates
the cross-system copy for a typical ioctl file operation.

When handling a file operation, the driver may execute
several memory copy operations, causing that many round
trips between the mobile systems because the server stub
has to send a separate request per copy operation. Large
numbers of round trips can degrade the I/O performance
significantly. In §5.1, we explain how we reduce these round
trips to only one per file operation by pre-copying the copy
data in the client stub for copy_from_user operations, as
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Figure 3: Typical execution of an ioctl file oper-
ation for (a) a local I/O device, (b) a remote I/O
device with unoptimized Rio (§4.2), and (c) a re-
mote I/O device with optimized Rio (§5.1). As the
figure shows, optimized Rio reduces the number of
round trips from 3 to 1. The reduction can be even
more significant if the file operation requires more
copy memory operations.

well as batching the data of copy_to_user operations in the
server stub.

5. MITIGATING HIGH LATENCY
The connection between the client and the server typi-

cally has high latency. For example, Wi-Fi and Bluetooth
have about 1-2 ms round-trip latency at best [51], which
is significantly higher than the few microseconds of latency
typical of native communications between a process and de-
vice driver (i.e., syscalls). In this section, we discuss the
challenges resulting from such high latency and present our
solutions to reduce its effect on I/O performance by reducing
the number of round trips due to copy memory operations,
file operations, and DSM coherence messages.

5.1 Round Trips due to Copies
Round trips due to copy_from_user and copy_to_user

memory operations present a serious challenge to Rio’s per-



formance since a single file operation may execute several
copy memory operations in succession. For example, a sin-
gle ioctl in Linux’s PCM audio driver may execute four
copy_from_user operations. To solve this problem, we use
the following two techniques. (i) In the client stub, we deter-
mine and pre-copy all the data needed by the server driver
and transmit it together with the file operation. With this
technique, all copy_from_user requests from the driver are
serviced locally inside the server. (ii) In the server stub, we
buffer and batch all data that the driver intends to copy to
the process memory and transmit it to the client along with
the return values of the file operation. With this technique,
all copy_to_user operations can be executed locally in the
client. Figure 3(c) illustrates these techniques.

Pre-copying the data for driver copy_from_user requests
requires the client stub module to determine in advance
the addresses and sizes of the process memory data buffers
needed by the driver. This is trivial for the read and write

file operations, as this information is embedded in their in-
put arguments. However, doing so for ioctl is non-trivial
as the ioctl input arguments are not always descriptive
enough. Many well-written drivers embed information about
some simple driver memory operations in one of the ioctl

input arguments, i.e., the ioctl command number. In such
cases, we parse the command number in the client stub to in-
fer the memory operations, similar to [22]. There are cases,
however, that the command number does not contain all nec-
essary information. For these cases, we use a static analysis
tool from our previous work, [22], that analyses the driver’s
source code to extract a small part of the driver code, which
can then be executed either offline or at runtime in the client
stub to infer the parameters of driver memory operations.
Finally, to maintain a consistent view of the process memory
for the driver, Rio updates the pre-copied data in the server
stub upon buffering the copy_to_user data if the memory
locations overlap.

5.2 Round Trips due to File Operations
File operations are executed synchronously by each pro-

cess thread, and therefore, each file operation needs one
round trip. To optimize performance, the process should is-
sue the minimum number of file operations possible. Chang-
ing the number of file operations is not always possible or
may require substantial changes to the process source code,
e.g., the I/O service code in Android (§7), which is against
Rio’s goal of reducing engineering effort. However, minimal
changes to the process code can occasionally result in no-
ticeable reductions in file operation issuance, justifying the
engineering effort. §7.3 explains one example for Android
audio devices.

5.3 Round Trips due to DSM Coherence
As mentioned in §4.1, we use 4 KB pages as the DSM

coherence unit in Rio. However, when there are updates
to several pages at once, such a relatively small coherence
unit causes several round trips for all data to be transferred.
In such cases, transmitting all updated pages together in a
single round trip is much more efficient.

5.4 Dealing with Poll Time-outs
poll is the only file operations for which the issuing pro-

cess can set a time-out. Since Rio adds noticeable latency
to each file operation, it can break the semantics of poll

if a relatively small time-out threshold is used. So far in
our Android implementation, all I/O classes we support do
not use poll time-out (i.e., the process either blocks indef-
initely until the event is ready or uses non-blocking polls).
If poll is used with a time-out, the time-out value should
to be adjusted for remote I/O devices. This can be done
inside the kernel handler for poll-related syscalls, such as
select, completely transparent to the user space. Using the
heartbeat round-trip time (§6), the client stub can provide
a best estimate of the additional latency that the syscall
handler needs to add to the requested time-out value. Pro-
cesses typically rely on the kernel to enforce the requested
poll time-out; therefore, this approach guarantees that the
process function will not break in the face of high latency. In
the unlikely case that the process uses an external timer to
validate its requested time-out, the process must be modified
to accommodate additional latency for remote I/O devices.

6. HANDLING DISCONNECTIONS
The connection between the client and the server may be

lost at any time due to mobility. If not handled properly,
the disconnection can cause the following problems: render
the driver unusable, block the client process indefinitely, or
leak resources, e.g., memory, in the client and server OSes.
When faced with a disconnection, the server and client stubs
take the appropriate actions described below.

We use a time-out mechanism to detect a disconnection.
At regular intervals, the client stub transmits heartbeat mes-
sages to the server stub, which immediately transmits back
an acknowledgement. If the client stub does not receive the
acknowledgement before a certain threshold, or the server
does not hear from the client, they both trigger a discon-
nection event. We do not use the in-flight file operations as
a heartbeat because file operations can take unpredictable
amounts of time to complete in the driver. Determining the
best heartbeat interval and time-out thresholds to achieve
an acceptable trade-off between overhead and detection ac-
curacy is part of future work.

For the server, network disconnection is equivalent to killing
a local process that is communicating with the driver. There-
fore, just as the OS cleans up the residuals of a killed process,
the server stub cleans up the residuals of the disconnected
client process. For each mmaped area and each file descriptor,
the server stub invokes the driver’s close_map handler and
release file operation handler respectively, in order for the
driver to release the allocated resources. Finally, it releases
its own bookkeeping data structures.

We take two actions in the client upon disconnection.
First, we clean up the residuals of the disconnected remote
I/O in the client stub, similar to the cleanup process in the
server. Next, we try to make the disconnection as trans-
parent to the application as possible. If the client has a
local I/O device of the same class, we transparently switch
to that local I/O device after the disconnection. If no com-
parable I/O device is present, we return appropriate error
messages supported by the API. These actions require class-
specific developments, and §7.3 explains how we achieve this
for sensors. Switching to local I/O is possible for three of
the I/O classes we currently support, including camera, au-
dio, and sensors such as accelerometer. For the modem, the
disconnection means that a phone call will be dropped or
not initiated, or that an SMS will not be sent; all behaviors
are understandable by existing applications.



Type Total
LoC

Component LoC

Generic 6618

Server stub 2801
Client stub 1651
Shared between stubs 647
DSM 1192
Supporting Linux kernel code 327

Class-
specific

498

Camera:
- HAL 36
- DMA 134
Audio device 64
Sensor 128
Cellular modem 136

Table 1: Rio code breakdown.
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Figure 4: Rio’s architecture inside an Android sys-
tem. Rio forwards to the server the file operations
issued by the I/O service process through HAL.
Rio supports unmodified applications but requires
small changes to the class-specific I/O service pro-
cess and/or HAL.

7. ANDROID IMPLEMENTATION
We have implemented Rio for Android OS and ARM ar-

chitecture. The implementation currently supports four classes
of I/O devices: sensors (e.g., accelerometer), audio devices
(e.g., microphone and speaker), camera, and modem (for
phone calls and SMS). It consists of about 7100 LoC, fewer
than 500 of which are I/O class-specific as shown in Table 1.
We have tested the implementation on Galaxy Nexus smart-
phones running CyanogenMod 10.1 (Android 4.2.2) atop
Linux kernel 3.0, and on a Samsung Galaxy Tab 10.1 tablet
running CyanogenMod 10.1 (Android 4.2.2) with Linux ker-
nel 3.1. The implementation can share I/O between systems
of different form factors: we have demonstrated this for shar-
ing sensors between a smartphone and a tablet.

Figure 4 shows the architecture of Rio inside an Android
system. In Android, the application processes do not di-
rectly use the device files to interact with the driver. In-
stead, they communicate to a class-specific I/O service pro-
cess through class-specific APIs. The I/O service process
loads a Hardware Abstraction Layer (HAL) library in order
to use the device file to interact with the device driver. Rio’s
device file boundary lies below the I/O service processes, for-
warding its file operations to the server. As we will explain
in the rest of this section, we need small modifications to
the HAL or I/O service process, but no modifications to the
applications are needed.

7.1 Client & Server Stubs
The client and server stubs are the two main components

of Rio and constitute a large portion of Rio’s implementa-

tion. Each stub has three modules. The first module sup-
ports interactions with applications and device drivers. In
the client stub, this module intercepts the file operations and
packs their arguments into a data structure; in the server
stub, it unpacks the arguments from the data structure and
invokes the file operations of the device driver. This mod-
ule is about 3000 LoC and is shared with our previous work,
Paradice [22]. The second module implements the communi-
cation with the other stub by serializing data structures into
packets and transmitting them to the other end. Finally,
the third module implements Rio’s DSM, further explained
in §7.2.

We use in-kernel TCP sockets for communication between
the client and server stubs [10]. We use TCP to ensure
that all the packets are successfully received, otherwise the
device, driver, or the application might break.

To handle cross-system memory operations, the server
stub intercepts the driver’s kernel function calls for memory
operations. This includes intercepting 7 kernel functions for
copy_to_user and copy_from_user and 3 kernel functions
for map_page. Using this technique allows us to support un-
modified drivers.

7.2 DSM Module
Rio’s DSM module is shared between the client and the

server. It implements the logic of the DSM protocol, e.g.,
triggering and handling coherence messages. The DSM mod-
ule is invoked in two cases: page faults and DMA. We in-
strument the kernel fault handler to invoke the DSM module
when there is a page fault. Additionally, the DSM mod-
ule must handle device DMA to DSM-protected pages. We
monitor the driver’s DMA requests to the device and invoke
the DSM module upon DMA completion.

To monitor the driver’s DMA requests to devices, we in-
strument the corresponding kernel functions. These func-
tions are typically I/O bus-specific and will apply to all I/O
devices using that I/O bus. Specialized instrumentation is
needed if the driver uses non-standard interfaces. For exam-
ple, the camera on the TI OMAP4 SoC inside Galaxy Nexus
smartphones uses custom messages between the driver and
the Imaging Subsystem (ISS) component, where the camera
hardware resides [49]. We instrumented the driver respon-
sible for communications with the ISS to monitor the DMA
requests, only with 134 LoC.

When we receive a DMA completion notification for a
memory buffer, we may use a DSM update protocol to im-
mediately push the updated buffers to the client, an optional
optimization. Moreover, we update the whole buffer in one
round trip. These optimizations can improve performance
as they minimize the number of round trips between mobile
systems (§5.3); as such, we used them for camera frames.

As described in §4.1, certain regions of the kernel’s address
space, namely the identity-mapped region, use large 1 MB
pages known as Sections in the ARM architecture. To split
these 1 MB Sections into smaller 4 KB pages for use with our
DSM module, we first walk the existing page tables to ob-
tain a reference to the Section’s first-level descriptor (a PGD
entry). We then allocate a single new page that holds 512
second-level page table entries (PTEs), one for each page;
altogether, these 512 PTEs reference two 1 MB Sections of
virtual memory. We populate each second-level PTE with
the correct page frame number and permission bits from the
original Section. Finally, we change the first-level descriptor



entry to point to our new table of second-level PTEs and
flush the corresponding cache and TLB entries.

7.2.1 Support for Buffer Sharing using Android ION
Android uses the ION memory management framework to

allocate and share memory buffers for multimedia applica-
tions, such as those using the GPU, camera, and audio [2].
The sharing of ION buffers creates unique challenges for Rio,
as demonstrated in the following example.

The camera HAL allocates buffers using ION and passes
the ION buffer handles to the kernel driver, which trans-
lates them to the physical addresses of these buffers and
asks the camera to copy new frames to them. Once the
frames are written, the HAL is notified and forwards the
ION buffer handle to the graphics framework for rendering.
Now, imagine using a remote camera in Rio. The same ION
buffer handles used by the camera HAL in the client need
to be used by both the server kernel driver and the client
graphics framework, since the camera frames from the server
are rendered on the client display.

To solve this problem, we provide support for global ION
buffers that can be used both inside the client and the server.
We achieve this by allocating an ION buffer in the server
with similar properties (e.g., size) to the one allocated in
the client; we use the DSM module to keep the two buffers
coherent.

7.3 Class-Specific Developments
Most of Rio’s implementation is I/O class-agnostic; our

current implementation only requires under 500 class-specific
LoC.

Resolving naming conflicts: In case the client has an I/O
device of the same class that uses device files with similar
names as those used in the server, the virtual device file must
assume a different name (e.g., /dev/foo_rio vs. /dev/foo

in Figure 1(b)). However, the device file names are typically
hard-coded in the HAL, necessitating small modifications to
use a renamed virtual device file for remote I/O.

Optimizing performance: As discussed in §5.2, sometimes
small changes to the I/O service code and HAL can boost
the remote I/O performance significantly by reducing the
number of file operations. For example, the audio HAL
exchanges buffered audio segments with the driver using
ioctls. The HAL determines the size of the audio segment
per ioctl. For local devices (with very low latency), these
buffered segments can contain as low as 3 ms of audio, less
than a single round-trip time in Rio. Therefore, we modify
the HAL to use larger buffering segments for remote audio
devices. Although this slightly increases the audio latency,
it significantly improves the audio rate for remote devices.
§8 provides measurements to quantify this trade-off. This
modification only required about 30 LoC.

Support for hot-plugging and disconnection: Remote I/O
devices can come and go at any time; in this sense, they be-
have similarly to hot-plugging/removal of local I/O devices.
Small changes to the I/O service layer may be required to
support hot-plugging and disconnection of remote I/O de-
vices. For example, the Android sensor service layer opens
the sensor device files (through the HAL) in the phone ini-
tialization process and only uses these file descriptors to read
the sensor values. To support hot-plugging remote sensors,
we modified the sensor service layer to open the virtual de-
vice files and use their file descriptors too when remote sen-

sors are present. Upon disconnection, we switch back to
using local sensors to provide application transparency.

Avoiding duplicate I/O initialization: Some HAL libraries,
including sensor and cellular modem’s, perform initializa-
tion of the I/O device upon system boot. However, since
the I/O device is already initialized in the server, the client
HAL should not attempt to initialize the I/O device. Not
only this can break the I/O device, it can also break the
HAL because the server device driver rejects initialization-
based file operations. Therefore, the HAL must be modified
in order to avoid initializing a device twice. Achieving this
was trivial for the open-source sensor HAL. However, since
the modem’s HAL is not open-source, we had to employ a
workaround that uses a second SIM card in the client to ini-
tialize its modem’s HAL. It is possible to develop a small
extension to the modem open-source kernel driver in order
to fake the presence of the SIM card and allow the client
HAL to initialize itself without a second SIM card.

Sharing modem for phone calls: Through the device file
interface, Rio can initiate and receive phone calls. However,
it requires further development to relay the incoming and
outgoing audio for the phone call. A phone call on Android
works as follows. The modem HAL uses the modem device
file to initiate a call, or to receive one. Once the call is con-
nected, with instructions from the HAL, the modem uses
the speaker and microphone for incoming and outgoing au-
dio. The modem directly uses the speaker and microphone;
therefore, the audio cannot be automatically supported by
Rio’s use of the modem device file. To overcome this, we
leveraged Rio’s ability to share audio devices in order to re-
lay the audio. There are two audio streams to be relayed.
The audio from the user (who is using the client device) to
the target phone (on the other side of the phone call) and
the audio from the target phone to the client. For the former
stream, we record the audio on the client using the client’s
own microphone and play it back on the server’s speaker
through Rio. The modem on the server then picks up the
audio played on the speaker and transmits it to the target
phone. For the latter stream, we record the incoming audio
data on the server using server’s microphone remotely from
the client using Rio, and then play it back on the client’s
own speaker for the user. We used CyanogenMod 10.2 for
relaying the audio for phone calls since CyanogenMod 10.1
does not support capturing audio during a phone call.

Currently, we can only support one audio stream at a time.
The main reason for this is that supporting both streams
will result in the user at the client hearing herself since the
audio played on the server’s speaker will be picked up by
the microphone. While we currently have to manually ar-
bitrate between the two streams, it is possible to support
automatic arbitration by measuring the audio intensity on
the two streams.

7.4 Sharing between Heterogeneous Systems
Because the device file boundary is common to all An-

droid systems, Rio’s design readily supports sharing between
heterogeneous systems, e.g., between a smartphone and a
tablet. However, the implementation has to properly deal
with the HAL library of a shared I/O device because it may
be specific to the I/O device or to the SoC used in the server.
Our solution is to port the HAL library used in the server
to the client. Such a port is easy for two reasons. First, An-
droid’s interface to the HAL for each I/O class is the same
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Figure 5: We use two different connections in our
evaluation. In (a), the phones are connected to the
same AP. This connection represents that used be-
tween mobile systems that are close to each other.
In (b), the phones are connected over the Internet.
This connection represents that used between mo-
bile systems at different geographical locations.

across Android systems of different form factors. Second,
all Android systems use the Linux kernel and are mostly
shipped with ARM processors. For example, we managed
to port the Galaxy Nexus smartphone sensors HAL library
to the Samsung Galaxy Tab 10.1 tablet by compiling the
smartphone’s HAL inside the tablet’s source tree.

8. EVALUATION
We evaluate Rio and show that it supports legacy applica-

tions, allows access to all I/O device functionality, requires
low engineering effort to support different I/O devices, and
achieves performance close to that of local I/O for audio de-
vices, sensors, and modem, but exhibits performance drops
for the camera due to network throughput limitations. We
further discuss that future wireless standards will eliminate
this performance issue. In addition, we report the through-
put and power consumption for using remote I/O devices
with Rio and show that throughput highly depends on the
I/O device class, and that power consumption is noticeably
higher than that of local devices. Finally, we demonstrate
Rio’s ability to handle disconnections.

All experiments are performed on two Galaxy Nexus smart-
phones. We use two connections of differing latencies for the
experiments. The first connection (Figure 5(a)) is over a
wireless LAN between mobile systems that are close to each
other, e.g., both in the same room. We connect both phones
to the same Wi-Fi access point. This connection has a la-
tency with median, average, and standard deviation of 4 ms,
8.5 ms, and 16.3 ms, and a throughput of 21.9 Mbps. The
second connection (Figure 5(b)) is between mobile systems
at different geographical locations, one at home and one 20
miles away at work. We connect these two phones through
the Internet using external IPs from commodity Internet
Providers. This connection has a latency with median, av-
erage, and standard deviation of 55.2 ms 57 ms, and 20.9
ms, and a throughput of 1.2 Mbps. All reported results use
the first LAN connection, unless otherwise stated.

8.1 Non-Performance Properties
First, Rio supports existing unmodified applications. We

have tested Rio with both stock and third-party applications
using different classes of I/O devices.

Second, unlike existing solutions, Rio exposes all function-
ality of remote I/O devices to the client. For example, the
client system can configure every camera parameter, such
as resolution, zoom, and white balance. Similarly, an ap-
plication can configure the speaker with different equalizer
effects.

Third, supporting new I/O devices in Rio requires low
engineering effort. As shown in Table 1, we only needed
128, 64, 170, and 136 LoC to support sensors, audio devices
(both speaker and microphone), camera, and the modem
(for phone calls and SMS) respectively.

8.2 Performance Benchmarks
In this subsection, we measure the performance of differ-

ent I/O classes in Rio and compare them to local perfor-
mance. Unless otherwise stated, we repeat each experiment
three times and report the average and standard deviation
of measurements. The phones are rebooted after each ex-
periment.

Audio devices: We evaluate the performance of the speaker
and the microphone measuring the audio (sample) rate at
different buffering sizes, and hence, different audio latency.
Using larger buffering sizes reduces the interactions with the
driver but increases the audio latency. Audio latency is the
average time it takes a sample to reach the speaker from
the process (and vice-versa for microphone), and is directly
determined by the buffering size used in the HAL.

Figure 6 shows the achieved rate for different buffering
sizes (and hence different latencies) for the speaker and the
microphone when accessed locally or remotely through Rio.
We use a minimum of 3 ms for the buffering size as it is
the smallest size used for local speakers in Android in low
latency mode. The figure shows that such a small buffering
size degrades the audio rate in Rio. This is mainly because
the HAL issues one ioctl for each 3 ms audio segment, but
the ioctl takes longer than 3 ms to finish in Rio due to the
network’s long round-trip time. However, the figure shows
that Rio is able to achieve the desired 48 kHz audio rate at
slightly larger buffering sizes of 9 and 10 ms for microphone
and speaker, respectively. We believe that Rio achieves ac-
ceptably low audio latency because Android uses a buffering
size of 308 ms for non-low latency audio mode for speaker,
and uses 22 ms for microphone (it uses 3 ms for low latency
speaker).

We also measure the performance of audio devices with
Rio when mobile systems are connected via the aforemen-
tioned high latency connection, e.g., for making a phone call
remotely at work using a smartphone at home. Our mea-
surements show that Rio achieves the desired 48 kHz for the
microphone using buffering sizes as small as 85 ms. How-
ever, for the speaker, Rio can only achieve a maximum sam-
pling rate of 25 kHz using a 300 ms buffer (other buffer sizes
performed poorly). We believe this is because the speaker
requires a higher link throughput, as demonstrated in §8.3.

Camera: We measure the performance of both a real-time
streaming camera preview and that of capturing a photo.
In the first case, we measure the frame rate (in frames per
second) that the camera application can achieve, averaged
over 1000 frames for each experiment. We ignore the first 50
frames to avoid the effects of camera initialization on perfor-
mance. Figure 7(a) shows that Rio can achieve acceptable
performance (i.e., >15 FPS) at low resolutions. The per-
formance at higher resolutions is bottlenecked by network
throughput between the client and server. Rio spends most
of its time transmitting frames rather than file operations.
However, streaming camera frames are uncompressed, re-
quiring, for example, 612 KB of data per frame even for
VGA (640×480) resolution, necessitating about 72 Mbps of
throughput to maintain 15 FPS at this resolution.
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Figure 6: Performance of (a) speaker and (b) microphone. The X axis shows the buffering size in the HAL.
The larger the buffer size, the smoother the playback/capture, but the larger the audio latency. The Y axis
shows the achieved audio rate.
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Figure 7: Performance of a real-time streaming camera preview (a) and photo capture (b) with a 21.9 Mbps
wireless LAN connection between the client and server. Future wireless standards with higher throughput
will improve performance without requiring changes to Rio.

We believe that the lower resolution camera preview sup-
ported by Rio is acceptable given that Rio supports captur-
ing photos at maximum resolutions. Rio will support higher
real-time camera resolutions using future wireless standards.
For example, 802.11n, 802.11ac, and a 802.11ad can achieve
around 200 Mpbs, 600 Mbps, and 7 Gbps of throughput
respectively [19, 21]. Such throughput capabilities can sup-
port real-time camera streaming in Rio at 15 FPS for res-
olutions of 1280×720 and 1920×1080, which are the high-
est resolutions supported on Galaxy Nexus. Moreover, Rio
can incorporate compression techniques, either in software
or using the hardware-accelerated compression modules on
mobile SoCs, to reduce the amount of data transferred for
real-time camera, although we have not yet explored this
optimization.

To evaluate photo capture, we measure the time from
when the capture request is delivered to the camera HAL
from the application until the HAL notifies the application
that the photo is ready. We do not include the focus time
since it is mainly dependent on the camera hardware and
varies for different scenes. We take three photos in each
experiment (totalling 9 photos in three experiments). Fig-
ure 7(b) shows the capture time for local and remote cam-
eras using Rio. It shows that Rio adds noticeable latency to
the capture time, mostly stemming from the time taken to
transfer the raw images from the server to the client. How-
ever, the user only needs to point the camera at the targeted
scene very briefly (similar to when using a local camera), as

the image will be immediately captured in the server. This
means that the shutter lag is small. It is important to note
that the camera HAL in Galaxy Nexus uses the same buffer
size regardless of resolution, hence the capture time is essen-
tially resolution-independent. The buffer size is 8 MB, which
takes about 3.1 seconds to transfer over our 21.9 Mbps con-
nection. As with real-time camera streaming, future wireless
standards will eliminate this overhead, providing latency on
par with local camera capture.

Sensors: To evaluate remote sensor performance, we mea-
sure the average time it takes for the sensor HAL to obtain
a new accelerometer reading. We measure the average time
of 1000 samples for each experiment. Our results of 10 ex-
periments show that the sensor HAL obtains a new local
reading in 64.8 ms on average (with a standard deviation
of 0.1 ms) and a new remote reading via Rio in 70.5 ms on
average (with a standard deviation of 1.9 ms). The sensor
HAL obtains a new reading by issuing a blocking poll op-
eration that waits in the kernel until the data is ready, at
which point the HAL issues a read file operation to read the
new value. Rio causes overhead in this situation because one
and a half round trips are required for the blocking poll to
return and for the read to complete. Fortunately, this over-
head is negligible in practice and does not impact the user
experience.

Modem: We measure the time it takes the dialer and mes-
saging applications to start a phone call and to send an
SMS, respectively. We measure the time from when the
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Figure 8: Throughput for using (a) audio devices (speaker and microphone) and (b) the camera (for video
streaming) with Rio. Note that the Y axis is in Kbps and Mbps for (a) and (b), respectively.

user presses the “dial” or “send SMS” button until the noti-
fication appears on the receiving phone. Our measurements
show that local and remote modems achieve similar perfor-
mance, as the majority of time is spent in carrier networks
(from T-Mobile to AT&T). For local and remote modems,
the phone call takes an average of 7.8 and 7.9 seconds (with
standard deviations of 0.7 and 0.3 seconds) while SMS takes
an average of 6.2 and 5.9 seconds (with standard deviations
of 0.3 and 0.6 seconds), respectively.

8.3 Throughput
We measure the wireless throughput required for using

different classes of I/O devices remotely with Rio. Our re-
sults show that using sensors, audio devices, and camera
remotely requires small, moderate, and large throughput,
respectively.

We quantify the throughput by measuring the amount of
data transmitted between the client and the server. We mea-
sure the number of bytes transmitted over the TCP socket,
therefore, our results does not include the overhead due to
the TCP header and headers of lower layers. We run each ex-
periment for one minute and measure the throughput. For
microphone, we record a one minute audio segment. For
speaker, we play a one minute audio segment. For camera,
we stream frames for one minute, and for accelerometer, we
receive samples for one minute. We report each experiment
three times and report the average and standard deviation.
We reboot the phone before each experiment.

Figure 8(a) shows the results for the speaker and mi-
crophone. It shows that audio devices require a moderate
throughput (hundreds of Kbps) and therefore Rio’s perfor-
mance for these devices is not throughput bounded. The
throughput increases as we increase the audio buffering size,
caps when the buffering size is 9-10 ms, and then decreases
for larger buffering sizes. This trend can be explained as fol-
lows: at low buffering sizes, the audio performance on Rio is
bounded by the link latency due to the high number of round
trips. As a result, fewer audio samples are exchanged, re-
sulting in lower throughput. As the buffering size increases,
more audio samples are exchanged, hence requiring higher
throughput. The number of audio samples exchanged (i.e.,
the audio rate) is maximized when the buffering size is 9-10
ms. For larger buffering sizes, the number of audio sam-
ples are fixed but the Rio’s communication overhead de-
creases, resulting in a lower overall throughput. Moreover,
the results show that speakers uses twice the throughput

used by the microphone. This is because audio samples for
the speaker are twice the size of the audio samples used by
the microphone in our experiments.

Figure 8(b) shows the throughput results for video stream-
ing from a remote camera using Rio. We show that the cam-
era requires high throughput, which is why the link through-
put is a performance bottleneck in our setup. At high reso-
lutions, the link is almost saturated with sending the frame
content; Rio’s overhead is small (since the number of frames
is small). For lower resolutions, more frames are transmitted
and therefore the effect of link latency becomes more notice-
able. This is why Rio fails to saturate the link throughput
at these resolutions.

We also measure the throughput when using the accelerom-
eter remotely with Rio. Our measurements show the average
throughput is 52.05 Kbps with a standard deviation of 1.72.
This shows that the throughput for sensors is small and
therefore we can leverage low throughput, low energy links
(such as Bluetooth) for these devices. Also, most of this
throughput comes from Rio’s overhead since accelerometer
data are small.

8.4 Power Consumption
We evaluate the overhead of Rio in terms of both systems’

power consumption. For each I/O device, we measure the
average power consumption of the client and server in Rio
and also the power consumption of the system when the I/O
device is used locally. In each experiment, we use the de-
vice for one minute, similar to §8.3, and measure the average
power consumption using the Monsoon Power Monitor [13].
We repeat each experiment three times and report the aver-
age and standard deviation of the experiment. The display
consumes a large amount of power; therefore, we try to keep
the display powered off whenever possible. More specifically,
for the accelerometer and audio devices, we turn off the dis-
play on both the client and the server and also on the local
system. For camera, we turn off the display only on the
server but not on the client or the local system (because the
camera frames are being displayed).

Figure 9 shows that Rio consumes noticeably more power
than local devices. Considering the sum of the power con-
sumption of client and server for Rio, Rio consume about
4× the power consumed by local accelerometer and audio
devices, and 2× the power consumed by the local camera.
These are expected results as Rio spans over two systems and
uses the Wi-Fi interface. For camera, the source of power
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of 128×96, 176×144, 240×160, 320×240, 352×288, and 640×480, respectively.

consumption of the local camera scenario is from the cam-
era itself, the display, the CPU, and even the GPU, which is
used for rendering the frames onto the screen. For Rio, the
source of power consumption on the client is from the Wi-Fi
interface, the display, the CPU, and the GPU, and for the
server, from the Wi-Fi interface, the CPU, and the camera.
For other devices, the main source of power consumption for
the local scenario is the device itself and the CPU. For Rio,
the source of power consumption on the client is from the
Wi-Fi interface and the CPU, and on the server is from the
Wi-Fi interface, the CPU, and the device.

8.5 Handling Disconnections
We evaluate Rio’s ability to react to disconnections for

the accelerometer. We play a game on the client using
the server’s accelerometer. Without warning, we disconnect
the server and the client, and then trigger a disconnection
event after a customizable threshold. Rio then transparently
switches to using the local accelerometer so that we can con-
tinue to play the game using the client’s own accelerometer.

9. RELATED WORK
The value of I/O sharing has been recognized by others

for both mobile and non-mobile systems. However, exist-
ing solutions have three limitations: They do not support
unmodified applications, do not expose all I/O device func-
tions to the client, or are not generic to I/O classes. One
possible advantage of these solutions is the incorporation
of I/O class-specific optimizations. It is important to note
that Rio can adopt I/O class-specific optimizations as well,
if needed. For example, we have already incorporated one
such optimization for audio devices (§7.3) where we modified
the audio buffering size to improve the audio rate. Another
possible optimization is the compression of camera frames
before transmission.

I/O sharing for mobile systems: Existing I/O sharing so-
lutions for mobile systems all suffer from the fundamental
limitations described above. For example, IP Webcam [3]
turns a mobile system’s camera into an IP camera, which
can then be viewed from another mobile system through a

custom viewer application. The client system cannot con-
figure all camera parameters, such as resolution; These pa-
rameters must be manually configured on the server. Wi-Fi
Speaker [4] allows music to be played on a mobile system’s
speaker from a PC. It does not, however, support sharing
the microphone. MightyText [11] allows the user to send
SMS and MMS messages from a PC or a mobile system us-
ing the SIM card and modem in another system. It does not
support phone calls.

Screen sharing: Applications like Miracast [12] allow one
system to display its screen on another system’s screen.
Thin client solutions also display content received from a
server machine on a client. Examples are the X window
system [45], THINC [25], Microsoft Remote Desktop [29],
VNC [43], Citrix Metaframe [6], and Sun Ray [46]. None
of these solutions use the device file boundary; their choice
of boundary is usually graphics-specific or even application-
specific. For example, X sets the boundary between the ap-
plication and X server. As a result, these solutions cannot
support other classes of I/O devices.

Other I/O sharing solutions: Remote file systems [14,35,
44], network USB devices [7,17,20,34], Wireless Displays [9],
remote printers [18], and IP cameras [8] support I/O shar-
ing as well. These solutions are also specific to one I/O
class, e.g., storage. Participatory and cooperative sensing
systems collect sensor data from registered or nearby mo-
bile systems [30,36]. These systems use custom applications
installed on mobile systems and are therefore more limited
than Rio, which supports a variety of I/O devices. Indeed,
these systems can incorporate Rio to more easily collect sen-
sor data from other systems.

Computation offloading: There is a large body of lit-
erature regarding offloading computation from mobile sys-
tems [32], e.g., Cyber Foraging [24], MAUI [28], and COMET
[33]. I/O sharing, as is concerned in this work, invites a dif-
ferent set of research challenges and has a focus on system
support rather than programming support. Nevertheless,
both computation offloading and I/O sharing benefit from
existing techniques for distributed systems. For example,
both Rio and COMET employ DSM, albeit with different
designs.



10. CONCLUDING REMARKS
We presented Rio, an I/O sharing solution for mobile sys-

tems that adopts a split-stack model at the device file bound-
ary. We demonstrated that Rio overcomes the limitations
of existing solutions by supporting unmodified applications,
exposing all I/O device functionality to clients, and reduc-
ing development effort. We presented an implementation of
Rio for Android and showed that it achieves adequate per-
formance for various sharing scenarios and that it supports
heterogeneous mobile systems. We next offer some insights
into the limitations of the current design and implementa-
tion of Rio and possible solutions to overcome some of them.

Supporting more classes of I/O devices: Our current im-
plementation supports four classes of I/O devices. It is pos-
sible to extend it to support graphics, touchscreen, and GPS,
since they also use the device file interface. There are, how-
ever, two classes of I/O that Rio’s design cannot support:
network and block devices. This is because these I/O de-
vices do not use the device file interface for communications
between the process and the driver. Network devices use
sockets along with the kernel networking stack and block
devices use kernel file systems.

Sharing I/O with untrusted systems: In this paper, we
assumed that the systems sharing I/O through Rio trust
each other not to be malicious (§3.2). For such scenarios,
Rio can simply adopt an authentication mechanism where
it asks the client and server’s owner(s) to authenticate the
I/O sharing, after which Rio assumes that both systems are
not malicious. However, supporting I/O sharing between
untrusted systems creates new challenges for Rio, which fall
into two categories. (i) Protecting the server. As also dis-
cussed in [22], device drivers are buggy, and malicious ap-
plications can abuse these bugs through the device file in-
terface to compromise the driver protection domain [15]. In
Rio, this means that a malicious process in the client can
compromise the server. In order to solve this problem, the
device driver and the device need to be sandboxed in a pro-
tection domain in the server, using techniques similar to
Paradice [22], Nooks [48], and VirtuOS [40]. (ii) Protecting
the client. An untrusted server can issue spurious mem-
ory copy operations to the client in order to compromise
the client. The client stub can simply protect against this
threat by strictly checking the memory copy operations re-
quested by the server, similar to [22]. Note that the server
can also snoop the client’s data that are shared with the I/O
device, e.g., the audio buffers. Since the server is completely
untrusted, we cannot provide any isolation for the client’s
data. This is indeed an inherent problem to any I/O sharing
systems, and not only to Rio.

Energy use by Rio: Using an I/O device via a wireless
link obviously incurs more energy consumption than using a
local one, as demonstrated in §8.4. In this work, we did not
address energy optimizations for Rio. Rather, we note that
most of the performance optimizations in Rio, e.g., those
described in §5, lead to more efficient use of the wireless
link and therefore to reduced energy consumption. We also
note that Rio’s quest to reduce latency rules out the use of
the standard 802.11 power-saving mode. On the other hand,
many known techniques that trade a little latency for much
more efficient use of the wireless link can benefit Rio, e.g.,
data compression [26] and µPM [39].

Supporting iOS: iOS also uses device files and hence can
be supported in Rio. Sharing I/O devices between iOS sys-

tems should require similar engineering effort reported in
this paper for sharing I/O devices between Android sys-
tems. However, sharing I/O devices between iOS and An-
droid systems require potentially non-trivial engineering ef-
fort, mainly because these two systems have different I/O
stack components and API.
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