
Interrupt Coalescing in Xen
with Scheduler Awareness

Michael Peirce & Kevin Boos

Outline

● Background
● Hypothesis
● vIC-style Interrupt Coalescing
● Adding Scheduler Awareness
● Evaluation

2

Background
Xen split block drivers

3

Background: Xen block drivers

dom0 domU guest

Xen hypervisor

blkback blkfront

4

driver

Background: ring buffers

dom0

blkback

RSP2

RSP3

RSP1

REQ4REQ5

REQ6

ring buffer
(in shared page)

domU guest

blkfrontresponse
consumer

request
producer

response
producer

request
consumer 5

driver

Background: interrupt event channels

dom0

blkback

domU guest

blkfront

interrupt: requests pending

interrupt: responses pending

Xen hypervisor

6

driver

Focus on blkback

dom0 domU guest

blkfront

interrupt: requests pending

Xen hypervisor

driver
blkback

interrupt: responses pending

7

Hypothesis

8

Hypothesis

1) Coalescing interrupts in Xen will increase throughput
of block devices at minor latency cost (vIC)
○ fewer interrupts reduces CPU overhead

2) Scheduler awareness will improve upon existing coalescing
policies by reducing latency
○ less coalescing towards end of timeslice

○ minimal reduction in throughput

9

Conventional Interrupt Coalescing
VMware vIC

10

VMware-style Coalescing (vIC)

● Interrupt coalescing is absent in Xen
● Added conventional coalescing based on VMware’s vIC
● Interrupt delivery ratio based on configurable parameters:

○ IOPS threshold
○ CIF threshold
○ (Epoch period)

● Implemented in dom0’s kernel, in xen_blkback module
○ On each block_io completion event, decide whether to deliver interrupt

11

vIC Implementation Diagram

dom0 domU guest

blkfront

interrupt: requests pending

Xen hypervisor

measure IOPS & CIF

blkback
driver coalesce interrupt: responses pending

12

Default Interrupt Delivery (no coalescing)

Device interrupts
from Hypervisor

Dom0

time
20ms 30ms

Core 1

Core 2

Guest 1 Timeslice Guest 2 Timeslice

10 interrupts

13

Increasing Disk Throughput in vIC

Dom0

time
20ms 30ms

Core 1

Core 2

Guest 1 Timeslice Guest 2 Timeslice

5 interrupts

14

Device interrupts
from Hypervisor

Scheduler Awareness

15

Latency Problems in vIC

Dom0

time
20ms 30ms

Core 1

Core 2

Guest 1 Timeslice Guest 2 Timeslice

16

Device interrupts
from Hypervisor

Reducing Latency

Dom0

time
20ms 30ms

Core 1

Core 2

Guest 1 Timeslice Guest 2 Timeslice

17

Device interrupts
from Hypervisor

Hybrid approach: vIC + scheduler awareness

● Should we use a separate interrupt delivery policy
based on scheduler info alone?
○ No, too coarse-grained and unintelligent

● Use scheduler info to configure vIC’s parameters & ratio
● Hard guarantee that interrupts will be delivered

right at the very end of a timeslice
○ “end of timeslice” cutoff is configurable

18

Exposing scheduler info from hypervisor

● Easy way: add hypercall to retrieve scheduler info
○ Pros: easy to implement, info generated on demand
○ Cons: high overhead, long latencies → stale info

● Hard way: shared memory region with dom0
○ Pros: info is fresh, available immediately
○ Cons: info is updated constantly, very difficult to implement

19

Implementing shared scheduler info

● Xen allocates a shared page
for each domain when it boots
○ boot info, arch-specific details,

interrupt masks/bit vectors

● Added scheduler info to shared page
○ One per domain (except idle & dom0)
○ Only visible in dom0
○ Updated in hypervisor’s schedule()

● Much difficulty with time synchronization 20

Scheduler Awareness Implementation Diagram

dom0 domU guest

blkfront

interrupt: requests pending

Xen hypervisor

blkback
interrupt: responses pending driver coalesce

measure IOPS & CIF

scheduler

21

Scheduler Awareness Policy

We choose to deliver an interrupt when:

remaining time in timeslice <
1

(Ratio * IOPS)

Dom0

22

Evaluation

23

Evaluation Setup

● Default credit scheduler enabled
● dom0 pinned to two CPU cores, reserved for dom0 only
● All guests pinned to the same single core

○ Eliminates effects of migration
○ Imitates guest CPU contention on high-density servers

● Tools to generate disk workload:
○ Copy files with dd, small block size to create more I/O requests
○ Custom interrupt injection tool

24

Evaluation Questions

● Can we achieve higher throughput
with minimal latency?

● Can we achieve the same increased
throughput as vIC with less latency?

vIC

scheduler
awareness

25

● Copy files using dd tool with small block size of 8 & 512 bytes
○ Measure execution time of 1GB file transfer

Throughput Measurement

26

Throughput Results

27One guest performing I/O, others hogging CPU

Throughput Results

28All guests performing I/O, all guests hogging CPU

● Instrumented frontend block driver in the guest kernel
○ Assign (guest-specific) unique ID to each request
○ Start timer when request is submitted
○ End timer when response is received

Latency Measurement

29

Latency Results

30

Conclusion

31

Concluding Remarks

● As expected, interrupt coalescing does increase throughput
● Scheduler awareness reduces latency while maintaining

the increased throughput
● Overall effects are less significant than expected

○ Need more demanding test environment

● Future work: change beginning of timeslice behavior

● Our experience developing on Xen was mediocre
○ Tedious, slow, constant reboots
○ Multiple independent code bases (dom0, xen, domU)
○ Limited debug logs, no post-crash log
○ Toolset support and networking is a nightmare 32

