
Interrupt Coalescing in Xen with Scheduler Awareness

Michael Peirce and Kevin Boos

April 29, 2016

1 Introduction

Whole-system virtualization causes interrupt han-
dling to be much more difficult than that of oper-
ating systems running directly on the hardware. In
particular, interrupt delivery and handling is cru-
cial for timer accuracy, I/O performance, and CPU
efficiency, among other facets of the system. Sub-
stantial efforts have been undertaken to improve in-
terrupt performance on virtual machines, including
software techniques such as interrupt coalescing that
combines multiple interrupts into one, and paravir-
tualization that reduces the number of interrupts
and exceptions in the first place.

While robust solutions exist for interrupt-related
timer problems, I/O performance remains one of
the most significant challenges for virtualization. A
variety of work has explored using interrupt coa-
lescing to improve I/O performance for the net-
working stack [3] and block devices [1], but these
works often have undesirable tradeoffs. For exam-
ple, VMware’s vIC work [1] does indeed improve
block device throughput, but at the cost of increased
latency.

In this paper, we describe our experience adding
interrupt coalescing to the Xen virtualization sys-
tem, which does not currently offer coalescing sup-
port. Furthermore, we improve upon vIC, the ex-
isting state-of-the-art coalescing policy for block de-
vices, by combating its increased latency without
reducing its increased throughput. We observe that
vIC, despite its best efforts, often coalesces inter-
rupts too aggressively and ends up delivering them
to guest VMs at inappropriate times, causing high
latency. Our key insight is that a coalescing pol-
icy can make better interrupt delivery decisions if it
stays informed of each guest’s runstate in the sched-
uler, enabling it to avoid delivering interrupts to
guests that are not running. We refer to this as
a scheduler-aware coalescing policy and explore the
various design decisions and benefits of such a pol-
icy, guided by the following hypothesis.

Hypothesis

The objective of this work is to implement inter-
rupt coalescing for block devices in Domain0 of the
Xen virtualization system. Our hypothesis for the
expected results of this implementation has two dis-
tinct parts:

1. We believe that by adding the coalescing pol-
icy described in VMware’s vIC paper to Xen,
we can achieve increased block I/O throughput
with a minor increase in latency.

2. Furthermore, we posit that adding scheduler
awareness to the above coalescing policy will re-
duce its increase in latency without sacrificing
much of the corresponding throughput gain.

In the next section, we give an overview of Xen’s
device model and describe how block drivers pass in-
terrupts between guest domains through event chan-
nels. In Sections 3 and 4, we detail how we im-
plemented coalescing similar to vIC and coalesc-
ing based on scheduler-awareness, respectively. Sec-
tion 5 presents how we evaluated the performance
of these policies, and Section 6 concludes the paper
with a discussion of future work.

2 Background: Xen Block Driver Model

The Xen Project [2] is a virtualization system that
subscribes to the microkernel philosophy: a small
privileged hypervisor multiplexes hardware access
among multiple guest operating systems, with all
other features implemented outside of the hypervi-
sor. Xen adopts a unique driver model in which
device drivers live in their own separate domain,
commonly referred to as Domain0 or dom0, not in
the guest domU domains and certainly not in the
hypervisor.

In this paper, we examine and focus our efforts on
Xen’s block driver architecture, though other driver
subsystems follow a similar model. Figure 1 pro-
vides a high-level view of block drivers in Xen. Xen
employs a split driver model in which the legacy
block device driver lives entirely in dom0, prevent-

1



req cons

dom0

blkback

RSP2

RSP3

RSP1

REQ4REQ5

REQ6

ringbuffer 
(shared page)

domU Guest

blkfront

rsp cons

req
prod

rsp
prod

driver

Xen hypervisor

Figure 1: A high-level view of block drivers in Xen.

ing guests from directly accessing the device. In-
stead, guest domains issue block I/O requests to
a paravirtual frontend driver, xen blkfront, which
forwards the requests to the xen blkback backend.
The backend then communicates directly with the
native device driver to perform the actual I/O op-
eration.

In Xen’s split driver model, the frontend and
backend communicate asynchronously via a ring
buffer stored in a shared page that is mapped into
both domains. [4] The ring buffer essentially com-
prises two FIFO queues: one for block I/O re-
quests and one for responses. The frontend pro-
duces block I/O requests and consumes the corre-
sponding responses from the backend; the backend
does the inverse, consuming requests from the fron-
tend and producing responses whenever it receives
a completion event from the actual driver. Thus,
the frontend manages the request producer and re-
sponse consumer pointers into the ring buffer, and
the backend manages the corresponding request con-
sumer and response producer pointers (Figure 1).
However, both the frontend and backend can read
(but not write) the pointers managed by each other
in order to carefully avoid overwriting any pending
requests or responses.

Interrupts occur when the frontend has produced
a request and needs to inform the backend of that
pending request, or when the backend has pushed a
response onto the queue and wants the frontend to
acknowledge the completion of that block I/O event.
For example, if the ring buffer is full, the frontend
may issue an interrupt telling the backend to pop
some requests off of the ring buffer before it can sub-

mit more. In normal execution, an interrupt is sent
from the backend to the frontend whenever there
are pending completion responses and the frontend
is not currently processing them.

Xen implements these interrupts with event chan-
nels, analogous to sockets, between the frontend and
the backend. As of this writing, Xen does not sup-
port interrupt coalescing in any part of its driver
model, either from the backend or from the fron-
tend1. In this paper, we focus exclusively on co-
alescing interrupts in the backend of dom0 as they
are received from the device driver and routed to the
appropriate guest domain. We are only concerned
with managing the delivery of interrupts outgoing
from the backend in dom0 that inform the frontend
of newly available block I/O completion responses.

3 Conventional Coalescing Design

The coalescing policy described in the vIC paper
is based around the number of commands in flight
(CIF) and IO operations per second (IOPS) [1].
When these values reach a certain threshold, it
makes sense to coalesce interrupts. The delivery
ratio, R, is chosen based on how many commands
in flight there are compared to the threshold. The
ratio dictates how many interrupts to coalesce into
a single interrupt to be forwarded.

The backed driver in dom0 stores the information
related to a each domain in a struct blkif. This
structure already had a field called inflight for

1We note that Xen does offer support for configuring hard-
ware coalescing in most NICs, but software coalescing in
other parts of the system is wholly absent.

2



Algorithm 1: ShouldSendNow

Input: ci, the coalescing information related to
this domain; cif, the number of
commands in flight; endTime, when the
current time slice is expected to end, in
nanoseconds

Output: true if the interrupt should be sent
now, or false if it should be coalesced

1 now ← the current time in nanoseconds;
/* endT ime = 0 if we do not know when

the current timeslice ends */

2 if endT ime ≤ 0 then
3 remaining ← −1;

4 else
5 remaining ← endT ime− now;

/* Check for end of timeslice */

6 if CurrIops(ci) 6= 0 then

7 nsecPerIo← 1, 000, 000, 000

CurrIops(ci)
;

8 if SkipUp(ci) < 2 · CountUp(ci) then
9 ioPerEvent← 2;

10 else
11 ioPerEvent← SkipUp(ci);

12 nsecPerEvent← nsecPerIo · ioPerEvent;
13 if 0 < remaining < nsecPerEvent then
14 return true;

/* This is all vIC-style coalescing */

15 epochSoFar ← now − EpochStart(ci);
16 if epochSoFar < epochPeriod then

/* Described in vIC paper */

17 CoalesceRecalc(ci, cif);
18 SetEpochStart(ci, now);

19 if cif < cifThreshold then
20 SetCounter(ci, 1);

21 else if Counter(ci) < CountUp(ci) then
22 SetCounter(ci,Counter(ci) + 1)

23 else if Counter(ci) ≥ SkipUp(ci) then
24 SetCounter(ci, 1);

25 else
26 SetCounter(ci, 1);
27 return false;

28 return true;

struct coalesce_info {

unsigned short count_up;

unsigned short skip_up;

unsigned short counter;

long long epoch_start;

unsigned int curr_iops;

atomic_t next_iops;

spinlock_t recalc_lock;

};

Listing 1: The data structure of coalescing details
added to each domain’s blkif structure.

keeping track of the number of commands in flight
for that particular domain, so we did not need to
add it ourselves. For the remaining parameters, we
created a struct coalesce info that we added to
the struct blkif, as shown in Listing 1.

The count up, skip up, and counter fields are
all directly associated with their uses in the vIC
paper. The epoch start field keeps track of when
the last recalculation epoch started, in nanoseconds.
The curr iops field gives the measured IOPS dur-
ing the last epoch, while the next iops gives the
measured IOPS so far in the current epoch. While
the names do not make much sense in that con-
text, they make sense when one considers how they
are used. When deciding the coalescing policy for
the current epoch, we use the calculation from the
previous epoch. The recalc lock is used to pre-
vent multiple threads from trying to recalculate the
parameters at the same time, which would cause
curr iops to be set to near-zero.

We use these parameters in the exact same man-
ner as described in the vIC paper. We also included
configurable parameters for iops threshold,
cif threshold, and epoch period. We defaulted
to most of the same values as the paper, with
a epoch period of 200ms and a cif threshold of
4, though we moved the IOPS threshold to 100
instead of 2,000 because our system is much smaller
than the datacenter-class servers used by VMware.

The algorithm used is shown in lines 15 onward
in Algorithm 1

4 Scheduler-aware Coalescing

The second aspect of our hypothesis proposes that
adding scheduler awareness to our coalescing proto-
col will reduce the latency of traditional coalescing,
i.e., vIC, while maintaining the same level of in-
creased throughput. The reasoning behind this is
that vIC’s coalescing policy is oblivious to a given
guest’s behavior, so it may end up delivering a
poorly-timed interrupt, such as when that guest is

3



dom0 

time20ms 30ms

Core 1

Core 2

dom1 Guest Timeslice dom2 Guest Timeslice

Device interrupts 
from Hypervisor

Figure 2: Conventional interrupt coalescing (vIC)
sometimes results in poorly-timed interrupt deliv-
ery, causing huge interrupt latency particularly to-
wards the end of a guest’s timeslice.

not running.

Figure 2 shows an example of such poorly-timed
interrupts. Towards the bottom of the figure, the
device interrupts coming from the hypervisor are
all destined for the dom1 guest, and we coalesce
them according to the aforementioned vIC policy.
In this example, the current IOPS and CIF param-
eters have resulted in a 0.25 delivery ratio, meaning
that four interrupts must be received by dom0 be-
fore one interrupt is sent from dom0 to dom1. As
such, the first four interrupts are delivered (after a
minor coalescing delay) while dom1 is still running,
as are the next four. However, the final two inter-
rupts are not delivered to dom1 before it stops run-
ning, as the current coalescing policy dictates that
four interrupts must be received before one can be
sent. The remaining two necessary interrupts are
not received until sometime in the future, e.g., dur-
ing another guest’s timeslice when dom1 is not run-
ning. Therefore, the two interrupts that did arrive
while dom1 was running, circled in red in Figure 2,
will experience high latency — they cannot be de-
livered to dom1 until its next timeslice is underway,
after dom2 finishes its own timeslice.

We aim to reduce the delivery latency of such in-
terrupts by equipping our coalescing decision algo-
rithm with the scheduling details of guest domains.
When dom0 is aware of a guest’s progress through
its timeslice, it can take this into account in or-
der to avoid delivering an interrupt at an inoppor-
tune time. Specifically, towards the end of a guest’s
timeslice, we force delivery of interrupts at a higher
delivery ratio than that specified by vIC; in other
words, we send interrupts no matter what vIC’s pa-
rameters would recommend. As seen in Figure 3,

dom0 

time20ms 30ms

Core 1

Core 2

dom1 Guest Timeslice dom2 Guest Timeslice

Device interrupts 
from Hypervisor

bypass
threshold

Figure 3: Scheduler-aware coalescing reduces la-
tency by delivering more interrupts towards the end
of a guest’s timeslice.

this results in an overall latency reduction as com-
pared to vIC-style coalescing.

We initially attempted to eschew the vIC policy
entirely in favor of a separate policy based on sched-
uler information alone. This took the form of a
graduated increase in interrupt delivery ratio as the
timeslice progressed. At the beginning of the time-
slice, we start with a small delivery ratio to coalesce
more interrupts, ideally reducing the overhead of
many unnecessary interrupt deliveries since we ex-
pect additional interrupts to arrive during the later
portions of the timeslice. Towards the middle of the
timeslice, we gradually increase the ratio to coalesce
fewer and fewer interrupts, and then disable coalesc-
ing to deliver every interrupt immediately near the
end of the timeslice.

However, we found that ignoring the I/O-specific
parameters that factor into vIC’s policy ultimately
proved detrimental to the overall throughput, as
the above timeslice-based decisions were too coarse-
grained to outperform vIC. Thus, we adopt a hybrid
approach that reverts to the conventional vIC policy
for the beginning and middle of the timeslice, and
then delivers more interrupts towards the end of the
timeslice regardless of vIC’s delivery ratio. In the
latter case (end of timeslice), the only information
used from vIC is the IOPS rate and delivery ratio,
which help define the cutoff threshold for bypassing
coalescing, as discussed below. Though this hybrid
approach is currently more beneficial than a sepa-
rate scheduler-only policy, in the future we could
revisit this with different policy settings, systems
configurations, and test cases.

The cutoff threshold for bypassing interrupt de-
livery can either be statically defined, e.g., “always
deliver interrupts when there is less than 1ms re-

4



Dom0 

1
(Ratio * IOPS)

Figure 4: We dynamically calculate the coalescing
bypass threshold as the time interval between when
the vIC policy would deliver coalesced interrupts.

maining in the timeslice,” or better yet, dynamically
calculated based on parameters used in vIC. We use
the following equation to dynamically choose an ap-
propriate threshold after which interrupts will be
immediately delivered (no coalescing):

tr <
1

R · IOPS

in which tr is the time remaining in the current
guest’s timeslice, IOPS is the I/O operations per
second as previously defined, and R is the delivery
ratio defined by vIC. The logic behind this equation
is that the fraction on the right side represents the
time interval between two adjacent interrupt deliv-
ery events that would occur according to vIC’s pol-
icy. Figure 4 further illustrates this time interval
and demonstrates that we chose this policy because
it adapts to the current vIC parameters. This en-
sures that we avoid spurious interrupts by not ac-
tivating the “always-deliver policy” too soon, i.e.,
when vIC’s policy would have delivered the inter-
rupt anyway before the timeslice ended. This equa-
tion is a slight oversimplification, however. When
1/2 < R < 1, interrupts can either be paired or sent
alone. In this case, we assume the worst — that this
interrupt would be paired, and that the next inter-
rupt will not happen in time – and thus replace R
in this equation with 1/2. As such, a dynamic coa-
lescing bypass threshold maximizes throughput by
minimizing the number of non-vIC interrupts, yet
minimizes latency by guaranteeing that interrupts
necessarily bypass the vIC policy at the end of a
guest’s timeslice.

The algorithm for implementing scheduler-
awareness is shown in lines 1 through 15 in Algo-
rithm 1

Pros Cons

Hyper-
call

Info generated on
demand; easy to
implement.

High overhead, long
hypercall latency
causes stale info.

Shared
Page

Info is fresh and
quickly available via
memory access.

Info is constantly
updated even if
unused; difficult to
implement.

Table 1: A comparison of implementation choices in
exposing scheduler information from the hypervisor
to dom0.

struct shared_info {

struct vcpu_info vcpu_info[MAX_VCPUS ];

ulong evtchn_pending [8];

ulong evtchn_mask [8];

uint wc_sec , wc_nsec;

struct arch_shared_info arch;

struct shared_sched_info sched_infos [32];

};

struct shared_sched_info {

int domain_id;

int runstate;

long timeslice_end_time;

int latest_vcpu_id;

};

Listing 2: The data structure stored in each do-
main’s shared page, with our additional structure
containing shared scheduler information (in blue).

4.1 Exposing Scheduler Information from

the Hypervisor to Domain0

When designing an interface to allow dom0 to ac-
cess the guests’ scheduling details maintained in the
hypervisor, we considered two options as described
in Table 1. For the reasons listed in the table, pri-
marily the need for very fresh, constantly updated
scheduler data, we chose to expose hypervisor sched-
uler data via a memory page shared with dom0
rather than a hypercall.

When Xen boots up a new guest domain, the
hypervisor allocates a new memory page shared
with that domain that includes one instance of
the struct shared info shown in Listing 2. This
structure includes virtual processor information, in-
terrupt masks and bit vectors for polling, wall-clock
time synchronization details, architecture-specific
information, and miscellaneous boot information
(omitted from listing). The newly-booted guest do-
main will utilize the information in the shared page
to initialize itself, and this information is only avail-
able to the guest’s kernel. Therefore, it is trivial for

5



the backend block driver in dom0’s kernel to quickly
access any information in the shared page, making
it the ideal medium for dom0-hypervisor communi-
cation.

Instead of wastefully allocating a new shared page
just for a few bytes of scheduler information, we
append it to the existing shared page because the
shared info structure only occupies about 2/3 of
a standard 4KB page. There exists one instance
of shared sched info per domain, which contains
that domain’s unique Xen-assigned ID, its runstate
(e.g., running, blocked, stopped), the wall-clock
time at which its current timeslice will end, and
the ID of the virtual CPU on which it last ran. We
choose wall-clock time as the synchronized clock be-
cause it is available in both guest domains and in the
hypervisor. Alternative time values like boot time
and CPU time are not directly exposed to guest do-
mains, including dom0, because that would violate
the isolation between the hypervisor and guests.

In order to update the scheduler information in
the shared page, we instrument the schedule() rou-
tine in the hypervisor, which executes any time the
hypervisor needs to context switch between guest
domains. This results in very fresh information al-
ways readily available to dom0 for its coalescing de-
cisions because schedule() is invoked very often,
updating the scheduling data 2-3 orders of magni-
tude more frequently than dom0 uses it. Though
this shared page exists in all domains, both dom0
and guest domUs, we ensure that the hypervisor
only writes to dom0’s copy of the shared page.
This prevents the massive security hole of private
scheduling information leaking into untrusted guest
domains.

An interesting challenge we encountered involved
a lack of clock synchronization between the hyper-
visor and dom0. Initially, we observed clock er-
ror on the order of dozens of milliseconds, mean-
ing that dom0’s understanding of the current wall-
clock time severely lagged behind that of the hyper-
visor. This caused interrupts to be delivered at the
wrong time, as the coalescing mechanism in dom0
thought there was still a few milliseconds remaining
in a guest’s timeslice, when in reality the hypervisor
had already scheduled out that guest domain sev-
eral milliseconds prior. Unfortunately, we were un-
able to influence the hypervisor’s view of wall-clock
time because it typically reads such values directly
from a hardware register; thus, we were relegated to
modifying dom0’s clock. Through a combination of
updating NTP and selecting different clock sources
for dom0, i.e., tsc instead of the default xen clock
source, we achieved a synchronized clock with fewer

Figure 5: Throughput when running dd on one
guest while one other guest runs a CPU-intensive
infinite loop.

Figure 6: Throughput when running dd on one
guest while three other guests run a CPU-intensive
infinite loop.

than 200µs of error, more than accurate enough for
our remaining timeslice estimation. The coalescing
policy takes this into account by refraining from in-
fluencing vIC’s policy if the remaining timeslice is
within the margin of error.

Another challenge is that sometimes a guest is
not actually scheduled out when its timeslice ends.
If there are no waiting guests to take its place, it just
continues running, though its runstate is switched
to “stopped” and its expected end time is not up-
dated. When this happens, we forego scheduler-
aware coalescing and revert back to regular coalesc-
ing. At that point, there is a decent chance that no
other guests are competing for this CPU (e.g., if this
guest alone has been pinned to a particular CPU),
so there is no purpose in trying to guess when its
extended timeslice will end.

6



Figure 7: Throughput when running dd on both
guests simultaneously, with both guests also running
a CPU-intensive infinite loop.

Figure 8: The end-to-end latency from when a
block I/O request is submitted from the frontend
to when the associated response is received back by
the frontend. Each column group corresponds with
the above three throughput tests.

5 Experimental Evaluation

5.1 Evaluation Setup

For all experiments described herein, we pin dom0
to two CPU cores and reserve those cores for dom0
alone, simply to ensure that anything executed in
dom0 is not CPU-bound. All other guests are
pinned to a single shared core to force scheduling
conflicts. This also simulates the high-density en-
vironment typically found in today’s virtualization
servers, in which a large number of guests are con-
tending for time on a smaller number of CPUs.

We conducted our experiments by running dd

from inside a guest, which reads from a file and
writes the contents to another file in small chunks.
We choose to read from /dev/zero and write to a
new file in the root directory. This meant that the
reading performed by dd did not need to go to disk,

allowing us to measure the effect of coalescing on
writing independently from its effect on reading.

All benchmarks were performed on each of the
three stages: no coalescing, coalescing using the
vIC policy, and coalescing with additional scheduler
awareness.

5.2 One Guest Performing I/O

To measure performance when only one guest per-
forms IO, we ran two or four guests. All but the
first guest ran a simple busy loop to fully maximize
CPU utilization. The first guest ran dd to move 1
GB from /dev/zero to a local file repeatedly. We
ran this for fifty iterations on two guests, and twenty
iterations on four guests.

The throughput results for two guests are shown
in Figure 5, and the latency results are in the fur-
thest left column group of Figure 8. We can see
that with the addition of coalescing, the through-
put increased by 2.5%, and the latency increased by
6.7%. When scheduler-awareness was also added,
the throughput remained at the same higher level
that coalescing achieved, while the latency was re-
duced to that which was achieved with no coalesc-
ing.

The results for four guests are shown in Figure 6
and the middle of Figure 8. The throughput from
all three policies are virtually the same, while the
regular coalescing policy has a 10% increase in la-
tency and the scheduler-aware coalescing policy has
a 3.5% increase in latency.

5.3 Multiple Guests Competing for CPU

Additionally, we ran benchmarks where two guests
each ran two processes: dd as described before
and an infinite CPU-intensive loop. This caused
more competition for the CPU within each guest’s
timeslice. The results from this test are shown in
Figure 7 and the right-most column group of Fig-
ure 8. In this benchmark, regular coalescing in-
creased throughput by 6.1%. Scheduler-awareness
increased the throughput by 10% over the original,
despite our prediction that it would slightly decrease
it. As for latency, regular coalescing increased la-
tency by 33% and scheduler-aware coalescing in-
creased it by only 15%, an overall 14% reduction
in latency compared to vIC.

5.4 Interrupt Interjection

Before we actually ran the above evaluations, we
were uncertain whether we would be able to see the
effects of our scheduler awareness policy. If the time
period that we considered to be “at the end of the
timeslice” was too small, the impact on our evalu-

7



ation could end up being statistically insignificant
for any practical number of trials.

To prepare for that scenario, we added to dom0’s
back-end driver the ability to indefinitely delay both
requests and responses. Then, instead of forwarding
them to the disk to perform the read or write oper-
ation, the driver sets a timer for when to send back
an artificial response. By using information gained
from the scheduler, the driver could set the timer to
send back the response right when the time slice is
ending, thus letting us measure performance effects
of a last-minute interrupt flood. This proved to be
unnecessary, as we were able to see the impact of
coalescing from our ordinary tests using real-world
tools like dd.

6 Conclusion

In summary, we have verified both aspects of our ini-
tial hypothesis. First, we have shown that adding
conventional interrupt coalescing (vIC) to Domain0
tends to increase the throughput and latency. Sec-
ond, the addition of scheduler awareness consis-
tently decreases the latency of interrupts, and may
actually increase the throughput rather than de-
crease it.

We did not expect scheduler awareness to result in
any throughput improvements, but it is a pleasant
surprise. Our best explanation of this phenomenon
is that when interrupts are coalesced and not sent
until the next timeslice, the application often treats
them as “timed out” and discards the completion
event. When the guest starts running again, it real-
izes that it has not yet received those interrupts,
and sends out repeated requests for them. The
scheduler-aware coalescing algorithm avoids this in
most cases, reducing the frequency of re-issued I/O
requests and thus increasing throughput.

The modifications made to Domain0’s ker-
nel can be found in our GitHub reposi-
tory at https://github.com/mongoose700/

xen-coalesce-kernel. Our modifications
to the Xen hypervisor are located at https:

//github.com/mongoose700/xen-coalesce.

Future Work

None of the benchmarks that we ran would have
been impacted by the IOPS threshold below which
no coalescing is done, as they were all designed to
have a high throughput. Further benchmarks on a
wide variety of applications that we did not manage
to do would allow for this.

Additionally, the calculation of current IOPS it-
self should be modified to be scheduler-aware. As

currently calculated, it does not take into account
the fact that the guest may have been scheduled
out for a large portion of the last epoch. Ideally,
the driver would measure IOPS on a guest-specific
basis, only when a particular guest is running.

Guests may also desire to configure the pa-
rameters (cif threshold, iops threshold, and
epoch period) separately. Currently, the values are
set once for all guests in the kernel of dom0. To
enable per-guest parameters, the guests could each
send their desired parameters along with their re-
quests, though this would consume space and reduce
(barely) the number of requests and responses that
could be put in the buffer.

We have only implemented and tested scheduler
awareness for the default scheduler in Xen, the
Credit scheduler. However, our implementation is
scheduler-agnostic and can be easily applied to other
schedulers, such as Xen’s Borrowed Virtual Time
and Simplest Earliest Deadline First schedulers. It
would indeed be interesting to explore how interrupt
coalescing is affected by other classes of schedulers,
such as preemptive ones, in which it is more difficult
to accurately predict exactly when a guest domain
will be scheduled out.

References

[1] I. Ahmad, A. Gulati, and A. Mashtizadeh. vic:
Interrupt coalescing for virtual machine storage
device io. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical
Conference, USENIXATC’11, pages 4–4,
Berkeley, CA, USA, 2011. USENIX
Association.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization.
In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles,
SOSP ’03, pages 164–177, New York, NY,
USA, 2003. ACM.

[3] Y. Dong, D. Xu, Y. Zhang, and G. Liao.
Optimizing network i/o virtualization with
efficient interrupt coalescing and virtual receive
side scaling. In 2011 IEEE International
Conference on Cluster Computing, pages
26–34, Sept 2011.

[4] A. Warfield. How the blkif drivers work.
http://compbio.cs.toronto.edu/repos/

snowflock/xen-3.0.3/docs/misc/

blkif-drivers-explained.txt. Online;
accessed 16 April 2016.

8

https://github.com/mongoose700/xen-coalesce-kernel
https://github.com/mongoose700/xen-coalesce-kernel
https://github.com/mongoose700/xen-coalesce
https://github.com/mongoose700/xen-coalesce
http://compbio.cs.toronto.edu/repos/snowflock/xen-3.0.3/docs/misc/blkif-drivers-explained.txt
http://compbio.cs.toronto.edu/repos/snowflock/xen-3.0.3/docs/misc/blkif-drivers-explained.txt
http://compbio.cs.toronto.edu/repos/snowflock/xen-3.0.3/docs/misc/blkif-drivers-explained.txt

	Introduction
	Background: Xen Block Driver Model
	Conventional Coalescing Design
	Scheduler-aware Coalescing
	Exposing Scheduler Information from the Hypervisor to Domain0

	Experimental Evaluation
	Evaluation Setup
	One Guest Performing I/O
	Multiple Guests Competing for CPU
	Interrupt Interjection

	Conclusion

