Eliminating State Entanglement with Checkpoint-based
Virtualization of Mobile OS Services

Kevin Boos

Ardalan Amiri Sani

Lin Zhong

Rice University, Houston, Texas
{kevinaboos, ardalan, Izhong}@rice.edu

Abstract

Mobile operating systems have adopted a service model in
which applications access system functionality by interacting
with various OS Services in separate processes. These inter-
actions cause application-specific states to be spread across
many service processes, a problem we identify as state entan-
glement. State entanglement presents significant challenges
to a wide variety of computing goals: fault isolation, fault
tolerance, application migration, live update, and application
speculation. We propose CORSA, a novel virtualization so-
lution that uses a lightweight checkpoint/restore mechanism
to virtualize OS Services on a per-application basis. This
cleanly encapsulates a single application’s service-side states
into a private virtual service instance, eliminating state entan-
glement and enabling the above goals. We present empirical
evidence that our ongoing implementation of CORSA on An-
droid is feasible with low overhead, even in the worst case of
high frequency service interactions.

1. Introduction

Modern mobile operating systems, such as Android, iOS, and
Windows 8 RT, provide a plethora of OS Services to serve
applications. These services often run as threads or managed
runtime objects in special userspace processes, using IPC
to provide applications with system functionality, e.g., [/O
access, Ul management, and media processing in Android.
Compared to the traditional shared library model, in which
an application dynamically loads library functions into its
address space, the OS Service model offers many benefits.
For example, it offers a more modular design that improves
maintainability, bolsters security enforcement by reducing
the attack surface, and simplifies the incorporation of closed-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

APSys 2015, July 27-28, 2015, Tokyo, Japan..

Copyright is held by the owner/author(s).

ACM 978-1-4503-3554-6/15/07.

http://dx.doi.org/10.1145/2797022.2797041

source, third-party services. In fact, the system resulting from
this model, e.g., Android, closely resembles a microkernel-
based operating system [16] and enjoys many of the same
design benefits.

However, the proliferation of OS Services has resulted in
the violation of a long-standing convention: all states of an
application are encapsulated in its own process memory. Al-
though the service model encourages separation of concerns,
its implementation bears a hidden cost: application-relevant
states are now strewn throughout the OS, spread across multi-
ple service processes. For example, many services in Android
store a list of application callbacks that have been registered
to trigger upon some event, such as a new sensor or location
input. More complex services like the camera service and
SurfaceFlinger, Android’s graphics manager, allocate and
maintain buffers on behalf of applications to store data like
frames and textures.

These service-side states create the state entanglement
problem: a tight coupling between an application and the un-
derlying OS instance. State entanglement presents significant
challenges to the important computing goals detailed in Sec-
tion 2.2: fault isolation, fault tolerance, application migration,
live update, and application speculation.

To eliminate state entanglement, we propose OS Service
virtualization, in which an application sees its own virtual
instance of an OS Service. This approach necessarily decou-
ples applications’ service-side states from the OS Service(s)
in which they reside, encapsulating a single application’s
service-side states into its own virtual service instance. De-
coupling and encapsulating these states removes the barriers
to the above important use cases.

We present our early efforts towards CORSA, the first work
to use checkpoint/restore as a means of virtualization, to the
best of our knowledge. CORSA virtualizes an OS Service
by checkpointing its state such that each checkpoint only
contains service-side states for a single application, providing
the illusion of per-application service instances. In order
to know when to checkpoint/restore, CORSA intercepts all
communications between services and applications, ensuring
that only a single application interacts with a given service at
a time. To better illustrate these semantics, envision a scenario

OS Service Process

Mgr Stub SystemService

Application @ Proxy @ @

Binder IPC

@ (JI:I)

Client Process

'
syscall :
A

Linux Kernel

Figure 1. The OS Service interaction model in Android.

in which application Foo wishes to access an OS Service
already in use by application Bar. CORSA saves the current
service state as a checkpoint associated with Bar before
allowing Foo to proceed. When Bar attempts to access the
service again, CORSA saves the current service state as Foo’s
latest checkpoint and restores Bar’s latest checkpoint to the
service. Thus, from the application perspective, both Bar
and Foo see their own private instance of the service, while
only one service instance exists from the system perspective.
Section 3 describes this process in further detail.

We discuss our implementation plans in Section 4 and
present a feasibility study of CORSA in Section 4.3. We
demonstrate that a checkpoint/restore mechanism is efficient
enough to be feasible for OS Service virtualization and that it
introduces no user-perceivable overhead, even in the extreme
cases of rapid and periodic transactions.

While this paper targets OS Services, our checkpoint-
based virtualization approach is also applicable to a wide
variety of domains, e.g., implementing generic OS-level vir-
tualization through kernel state checkpointing, or isolating
and virtualizing microkernel servers. A notable advantage
of our method over others is that checkpointing does not
require any knowledge or understanding of the entity being
virtualized; for example, OS-level virtualization using check-
pointing would not require knowledge of the kernel’s system
calls. CORSA can even virtualize closed-source services like
Google Services and vendor-specific daemons.

2. Background: OS Service Model

Mobile OS Services do not execute in the same process as the
applications that use them, so accessing their functionality
is more involved than with a shared library model. Figure 1
shows the procedure that an application undergoes to access
an OS Service in Android:

1. The application queries the service directory, indexed by
service name. The service directory returns a Manager
proxy interface to the OS Service.

2. The application calls a Manager convenience function with
the arguments it wishes to pass to the OS Service.

3. The Manager transparently marshals the function and
its arguments into a Parcel and initiates a Binder IPC
transaction to send the serialized Parcel to the OS Service.

4. After the OS Service’s Stub unmarshals the function argu-
ments from the Parcel, it verifies application permissions

and then executes the remote function, which may invoke
kernel syscalls or other services.

5. The Stub returns the function’s result to the Manager proxy,
which delivers it back to the application as if it were a local
function call all along.

Each application has its own private instance of a Manager
proxy for every OS Service it uses. This 1:N mapping
between an OS Service and its Manager proxies forces the
service to act as a multiplexer, implicitly storing application-
specific state about its connections with each proxy.

2.1 Classification of Service Architectures

Unlike desktop OS daemons, each mobile OS Service is not
cleanly contained within its own process, or even within its
own thread. Android implements OS Services in three ways
across different layers of its userspace software stack.

SystemServices are implemented as Java classes that
run in a managed environment: the Dalvik VM (now ART).
All SystemServices are instantiated upon boot as single-
ton objects in the system_server process, sharing one
address space. They can spawn their own thread — though
most do not — but not their own process. These services com-
prise the frameworks behind Android’s main SDK, frequently
interacting with applications and other services.

Native Core Services are implemented as C/C++ libraries
that handle requests from upper-level services or applications
through Binder IPC. These services typically spawn their
own thread and live in one of several container processes,
i.e., mediaserver, surfaceflinger, or sensorservice, but never
within the system_server process.

Native Daemons each execute in their own process and
are started by init upon boot, but use standard Unix domain
sockets in place of Binder IPC. They are not directly available
to user applications in Android.

2.2 Problems with OS Service Model

The distributed nature of the OS Service model causes state
entanglement, i.e., application-specific states being stored in
the service’s process memory. These states may be explicit,
e.g., data that the application has previously passed to the
service for future use, as well as implicit, e.g., a representation
of the current connection between an application and service.
Both the application and service rely on the existence of
these service-side states for correct operation going forward,
posing a challenge to a variety of use cases.

For fault isolation, if an OS service crashes when serving
one application, other applications or services using that
service will experience failures as well. This introduces new
security threats: if a malicious application compromises a
service, e.g., by exploiting bugs, it can potentially affect other
applications relying on that service by either accessing their
data or causing a denial of service.

For fault tolerance, recovering from a failure on behalf
of one application requires restoring the service to a prior

state, which unexpectedly breaks all other applications using
that service. Proper fault isolation is a prerequisite for side
effect-free fault recovery.

For application migration, the application process is
transferred to and resumes execution on a new device. The
application, unaware that it has migrated, will attempt to
continue using an OS Service from the old device, but will
immediately fail because the service on the new device lacks
the old states needed to handle that application’s requests.
Application migration requires transferring not only the
application process itself but also its states in other service
processes [24]. Identifying and extracting these service-side
states requires expert knowledge and explicit per-service
support, woefully absent from today’s services.

For live update of an OS Service, the states in that service
processes must reach quiescence [10] before being saved;
live updating a long-running application requires quiescence
in both its process state and that of its services, not easily
achieved compared to traditional OSes.

Finally, for application speculation, the OS must prop-
erly manage each speculative instance’s service-side states,
adding them before forking it and removing them after fork-
ing it based on speculation correctness. Pruning a specific
instance’s states from a given service is difficult without af-
fecting other applications using that service.

Properly encapsulating application-specific state in OS
Services is the key to eliminating state entanglement. In the
following section, we explain our approach for doing so.

3. Design of CORSA

In order to solve the state entanglement problem identified
above, we posit that OS services should be virtualized on
a per-application basis. Each virtual service instance serves
one application only, cleanly encapsulating that application’s
service-side states.

We present CORSA, our solution for virtualizing OS Ser-
vices that enables the following use cases. For fault isolation,
an OS service failure only affects that specific virtual instance,
isolating it from other applications. This also facilitates fault
tolerance, making it possible to restore a previous version of
the service without affecting other applications. Application
migration simply requires transferring its virtual service in-
stance(s) to the target machine. Transferring an OS Service
without virtualization is destructive because it would over-
write that service’s states for all other applications, causing
everything but the newly-migrated application to fail. Live up-
date of both applications and services are simplified because
quiescence is only required for a single application-service
pair at a time. Finally, application speculation is much easier
because adding/removing service-side states for newly forked
instances becomes trivial.

App C

Figure 2. The checkpoint tree for one OS Service. Each
node represents a checkpointed service instance for a
given application; X is the N*" checkpoint for appli-
cation X. The dashed arrows convey a history of check-
points; solid arrows represent a transition between appli-
cations using the service.

3.1 Checkpoint-based Virtualization

CORSA employs an innovative checkpoint-restore mechanism
that encapsulates the service-side states of each application
into private virtual service instances. Our key idea is to
time-multiplex the service between applications such that
it serves only one application at a time, switching between
virtual service instances as needed. At switch time, CORSA
checkpoints the current application’s service instance and
restores the next application’s most recent service checkpoint.
CORSA monitors and intercepts IPC between applications and
services to know when to checkpoint/restore. This procedure
is conceptually similar to a context switch between multiple
threads running on a CPU core.

In this way, we guarantee that CORSA preserves two key
invariants: (i) only a single application accesses a given OS
Service at a time, and (if) each virtual instance checkpoint
contains service-side states that belong to one application
only, eliminating state entanglement.

Feasibility of Checkpointing OS Services

An immediate concern is the efficiency of checkpoint/restore
operations and whether they will affect the user experience. A
checkpoint/restore must occur every time applications alter-
nate using a given OS Service, so the frequency of application
switching determines the time frame for checkpointing. In
order for checkpointing to be user-imperceptible, the min-
imum time between two different applications transacting
with a given service must be greater than the time required to
checkpoint/restore that service. Our measurements in Section
4.3 indicate that checkpoint-based virtualization is not only
feasible but has minimal impact on transaction latency and
application responsiveness, even in the atypical worst case of
very frequent application switching.

Furthermore, in Section 4.1, we show that checkpoint and
restore operations need not execute sequentially and can be
done in parallel, further reducing the critical path between
application transitions to that of just a restore operation.

Checkpoint Management

As shown in Figure 2, CORSA maintains a checkpoint tree, a
collection of checkpointed virtual service instances organized

by client application. Figure 2 also illustrates the temporal
progress of an OS Service. It depicts a scenario where the
service handles transaction requests from three applications
in the following order: A, B, A, C, B, A. For the first
transaction from a given application, CORSA restores the
service to its Base checkpoint, providing the application with
a fresh virtual service instance. When the service receives a
transaction from a different application, CORSA checkpoints
the service, adds it to the checkpoint tree, and then restores the
latest checkpoint associated with the next application. Note
that we describe checkpoint and restore as ordered, sequential
operations for conceptual clarity; they do not necessarily have
to occur sequentially or in this order (see Section 4.1).

To minimize memory consumption, CORSA reduces
checkpoint trees using delta compression and prunes old
nodes from the tree according to an application-adjustable
policy. There is an inherent trade-off between memory usage
and fault tolerance: if fault tolerance is of higher priority,
CORSA preserves a longer checkpoint history tailored to the
application’s needs; otherwise, CORSA retains only the most
recent service checkpoint for each application.

3.2 Design Challenges

The design of CORSA thus far faces two notable challenges.
First, certain OS Services require simultaneous access to
states from more than one application, in direct conflict
with the invariants guaranteed by per-application service
virtualization. Second, many services interact with external
entities, such as I/O devices or cloud servers. Applying a
naive checkpoint/restore mechanism will break the services’
interactions with such entities. We describe our plan to solve
these two challenges below.

Services Requiring Multiple Apps’ States

Some OS Services need access to multiple applications’ states
simultaneously in order function correctly. For example, An-
droid’s ActivityManagerService (AMS) is responsi-
ble for starting and delivering lifecycle events to applications,
navigating between Activities (Ul windows), generating the
“recently used apps” list, and more. In this case, applying
CORSA’s normal checkpoint-based virtualization mechanism
to the entire service would cause the service to behave incor-
rectly; for example, the AMS would only ever show a single
application on its recent apps list.

Our key insight into supporting these services is that they
need not be virtualized in their entirety. We can refactor
them into a per-application service frontend and a single,
system-wide service backend. Each frontend contains an
individual application’s state plus any functionality that needs
access to only that state, such as AMS’s lifecycle events and
Activity navigation. The backend only contains functionality
that requires access to multiple applications’ states at once,
e.g., the AMS’s recent apps list. To ensure that frontends
are fully decoupled from the backend, the backend must be
stateless. We maintain a stateless backend by querying every

available frontend in a uniform, agnostic fashion, only when
the backend needs to gather multi-application states. We then
apply CORSA’s checkpointing approach to virtualize each
frontend only, thus preserving state isolation and maintaining
our two invariants.

Services Interacting with External Entities

Many OS Services are not simply self-sufficient; they often
communicate with other external entities, e.g., /O devices
and cloud servers. One determining factor in an OS Service
working with CORSA is whether its external entities are able
to multiplex, i.e., accommodate multiple service instances
at once. If an entity cannot multiplex, then CORSA may
violate the entity’s expectations by creating multiple service
instances and switching between them without the entity’s
knowledge. For example, CORSA will work with I/O-related
OS Services as long as their external entities, device drivers,
allow multiple service instances to exist. In Section 4.2, we
show that existing device drivers either support multiplexing
or can be easily modified to do so.

Another important consideration is whether such exter-
nal entities are stateful or stateless. An entity is stateful if
it maintains some state for each service instance communi-
cating with it, and stateless if it does not. Stateless entities
present no difficulties, but stateful entities require additional
consideration for the following cases.

For fault isolation and tolerance, a crashed OS Service
instance must not corrupt the external entity, and the entity
should clean up any residual state belonging to the crashed
service instance. The same requirements hold true for live
update and application speculation, where service-side states
must not violate consistency with the external entity, either
post-update or post-speculation. In the case of Android’s
sensor service, this procedure is as simple as closing the file
descriptor of the sensor device file, which causes the kernel to
invoke the driver’s cleanup handlers. For the camera service,
an explicit API call into the driver is needed to reset the
camera. Section 4.2 provides further details.

For application migration, an OS Service instance must
retain the proper state to continue interacting with its entity
post-migration. If the entity is a cloud server, we can achieve
this by migrating the network state of the service-cloud
connection, a la [13]. However, if the entity is local, like
an I/O device, its state needs to be either migrated to or re-
created on the target device. Since I/O migration requires
explicit hardware/driver support, typically non-existent, we
opt to recreate the state of the I/O device using a record and
replay technique inspired by [9, 18]. That is, we record the
interactions between the OS Service and device driver on the
host machine and then replay them on the target machine.

Recording and replaying service interactions incurs stor-
age overhead on the order of the number of recorded events.
We reduce this overhead by clearing the recorded logs when-
ever the I/O device reaches a stateless point. In the camera

service example, we can reset the log whenever the applica-
tion releases its camera handle, which turns off the camera.

4. Ongoing Implementation

Although we regard the choice of checkpointing software
as an implementation decision orthogonal to the design of
CORSA, existing works suffer from the limitations explained
in Section 6. Thus, we introduce our preliminary, ongoing im-
plementation of checkpoint-based virtualization on Android.

4.1 Checkpoint/Restore Mechanism

We adopt a lightweight approach that checkpoints an OS
Service by duplicating its address space, registers, and other
process structures from within the kernel. This takes full
advantage of Linux’s copy-on-write feature to significantly
reduce initial checkpointing delay. Our restore implementa-
tion is even faster, simply swapping pointers for the current
process control block to those of a prior checkpoint.

We identify a latency-reducing optimization opportunity:
only the restore operation must occur during an application
switch, the checkpoint operation can actually execute in
parallel or asynchronously after a prior checkpoint is restored,
due to the disjoint nature of the two memory regions. As such,
the requirements for checkpoint and restore are different;
checkpointing can be slow but restoring should be as fast as
possible. This optimization shortens the critical path of an
application switch from checkpoint + restore to just restore.

CoORSsA intercepts IPC between applications and an OS
Service by instrumenting Android’s Binder kernel driver.
CORSA monitors both the application proxy side and the
service stub side of the driver (§2) in order to track which
application issued the transaction and which service should
be checkpointed. Checkpoint/restore operations are triggered
right before the service thread executes the transaction.

SystemServices (§2.1) further complicate our imple-
mentation because they do not run within their own thread or
process, rendering existing JVM checkpointing approaches
inapplicable [15]. We plan to inject code into the Java runtime
(Dalvik/ART) to duplicate the state of a SystemService
object (e.g., heap, class files) to an in-memory copy, avoiding
the overhead of conventional object serialization [21].

4.2 Handling External Entities

In this section, we investigate whether external entities sup-
port multiplexing. We observe three different entity behaviors,
consistent across two platforms: a Galaxy Nexus running An-
droid 4.2, and a Nexus 5 running Android 5.0.

(?) Some entities fully support multiplexing. For example,
we run two instances of Android’s input service, which
communicates with the kernel’s touch screen device driver.
The touch screen driver successfully delivers touch input
events to both service instances, reporting no errors.

(1) Some entities support multiplexing but require one OS
Service instance to perform certain actions before switching

App A
(Opening App)
App B idle
(Launcher)
A
9 O ————

to+ity

Figure 3. Timing diagram of checkpoint/restore opera-
tions when two applications transact with an OS Service.

to another. For example, the camera device driver requires
the service using it to close its camera connection before
another connection can be opened. To support such entities in
CORSA, the service instance merely needs to query the entity
and initiate a new connection only when the entity permits.
(#ii) Some entities can fully support multiplexing after
trivial changes. For example, the sensor device driver has
a simple sanity check that prevents multiple services from
using it concurrently, merely because it does not expect that
behavior by default. Once we disable that check, the sensor
driver supports multiple service instances concurrently.

4.3 Feasibility Analysis

In Section 3.1, we claim that checkpointing an OS Service is
a feasible means of virtualization. To justify that claim, we
obtain and analyze the following measurements on a Nexus 5
smartphone running Android 5.0: the time to checkpoint (¢¢)
and restore (tg) a service, the interval 6 between two one-
shot transactions, and the maximum frequency f of periodic
event transactions.

First, we measure the execution time of a superfluous
checkpointing algorithm to be ¢t = 0.3 ms at most, which
copies every member of task_struct (the kernel’s process
structure) to an in-memory replica. Note that the actual
contents of virtual memory and files are not duplicated, just
the structures that represent them. This memory copy is
only necessary for each service’s initial Base checkpoint;
subsequent checkpoints will quickly copy only the deltas.

We measure the time to restore a prior checkpoint to be
tr = 4.4 us at most. This represents the time to swap the
current process’s task_struct with a previously check-
pointed one and activate its new address space. Although a
restore operation incurs negligible latency, the new address
space introduces minor overhead to the service’s next trans-
action by page faulting on writes to memory, a hidden side
effect of copy-on-write. By profiling fork (), we find that it
takes only 1 ms to copy and write to about 10 MB of memory,
or 2500 pages. Although every service is different, we believe
that most transactions will write to far fewer than 2500 pages,
incurring well under 1 ms of latency, because transactions
are small, short-lived functions.

Second, we measure 6, the interval between two transac-
tions from different applications. The minimum 6 value is
1.07 ms, which occurs when opening a new application from
the launcher, because the launcher application and the new
application rapidly transact with SurfaceFlinger, Android’s

graphics service. Out of 600 data points, we find that nearly
90% of 6 intervals are larger than 3 ms, dominating the max-
imum checkpointing latency ¢¢ by an order of magnitude.
Figure 3 depicts the timing relationships between these mea-
surements. As long as 6 is larger than the time to checkpoint
tc, which holds true for 100% of our measurements, CORSA
will cause no slowdown to applications or services.

Third, we measure f, the maximum frequency of periodic
event transactions as 221 Hz, which occurs when the sensor
service delivers sensor events to applications. This means that
sensor data arrives approximately every % = 4.5 ms at the
fastest. Note that this high sampling rate is rarely used, 10-
20 Hz is typical. We also measure the time required to deliver
a sensor event as 27 ps. Since CORSA must checkpoint and
restore the sensor service before delivering the event to each
application, it can support tcfhi% ~ 13 applications
concurrently without slowing down sensor event delivery.
Even if readings arrived late due to checkpointing latency,
this would not break correctness because Android makes no
guarantee about the real-time delivery of sensor data.

Based on these encouraging preliminary figures, we be-
lieve that checkpointing is a feasible approach for virtualizing
OS Services. Even in the most latency-critical situations, the
checkpointing delay ¢¢ is completely masked several times
over by the 6 interval, and rapid periodic transactions like
sensor events suffer no delay when serving over a dozen
applications. Although we only provide microbenchmarks
at this time, we believe they are a good predictor of final
implementation performance because the above measured
latency values dominate that of other necessary actions, such
as bookkeeping of checkpoints. Furthermore, as described
in Section 4.1, our full implementation of CORSA will par-
allelize checkpoint and restore, further reducing the critical
path (Figure 3’s C/R block) from ¢t + tr down to just ¢ g.

5. Discussion

Although we limit the scope of this work to the boundary
between applications and mobile OS Services, state entan-
glement manifests between applications and many other soft-
ware layers: shared libraries, hardware abstraction layers,
device drivers and other kernel subsystems, and even ex-
ternal cloud servers. We believe there is no silver bullet to
solving state entanglement across all layers; rather, differ-
ent layers will necessitate different solutions. For example,
the application-relevant states stored in device drivers, e.g.,
low-level configuration data, are fundamentally different than
those in cloud servers, e.g., high-level application status; they
also operate across different boundaries: system calls vs. net-
work messages.

Another point of consideration is what level of modifi-
cation we permit to the existing software stack. Currently,
we permit CORSA to make little to no modifications to OS
Services in order to maintain compatibility with Android’s
large legacy codebase. If we permit modification to the en-

tities themselves, we will approach techniques similar to
those discussed in the above Manual Disentanglement para-
graph (§6). If we permit modification to lower layers like
the kernel, higher-level entities can be made stateless with-
out being rewritten. If we permit clean-slate design, an OS
built from scratch to better manage states could dramatically
simplify or entirely eliminate state entanglement between
many (or all) software layers. We could even make entities
completely stateless, a la RESTful services, as described at
the end of Section 6. In the future, we intend to explore al-
ternative boundaries and techniques for disentangling states
across various entities, beyond checkpoint/restore or record
and replay.

6. Related Work

We organize our discussion of related work by the technique
or boundary used to separate stateful entities from each other.

Checkpoint/Restore: Checkpoint/restore is our chosen
technique for saving and recreating states in an entity — an
OS Service in this case — to realize its virtualization. We do
not purport to reinvent a novel checkpoint/restore design, but
nevertheless choose to implement our own solution due to
existing works’ lack of features and compatibility. Our im-
plementation will provide several Android-required features
missing from prior approaches, including support for (i) man-
aged runtime environments [1, 3, 8], (ii) individual threads
and multithreaded processes, and (iii) non-GNU/Linux OSes
or those without full POSIX compliance.

Record and Replay: One close alternative to check-
point/restore for recreating states is record and replay [9],
in which interactions between entities are recorded and then
replayed later to recreate interaction states in fresh entity
copies. Checkpointing is generally much more efficient than
record and replay, both temporally and spatially, because
many recorded interactions can be collapsed into a single
checkpoint, and many replayed actions can be achieved with
a single restore. Flux [24] is one such work that migrates
applications by extending CRIU [1] to Android and record-
ing/replaying interactions between applications and services.
Each service function must be manually annotated to define
its behavior when recording and replaying interactions. In
addition, service developers must also write custom proxy
functions that adapt replayed interactions to the new target
device, necessary for avoiding incorrect post-migration be-
havior. CORSA’s checkpointing approach does not require sig-
nificant manual effort nor explicit knowledge of each service,
addressing the larger goal of state disentanglement, especially
in non-migration contexts. Furthermore, while the high cost
of Flux’s record/replay approach may be masked by the huge
delays of application migration, it is prohibitive for local low-
latency operations, such as fault recovery, live update, and
application speculation, which CORSA can efficiently handle
through checkpoint/restore.

Virtualization: Unlike conventional virtualization,
CORSA can virtualize a given entity, such as an OS Service,
without also virtualizing everything above it. Traditional VMs
offer a narrow, clearly-defined boundary between multiple
whole operating systems, making them easier to decouple
and migrate [6, 14]. However, because VMs operate at such
a low boundary, they are too coarse-grained; for example,
migrating or restarting a single entity requires migrating or
restarting the entire VM, introducing unnecessary overhead
despite efforts to reduce the amount of transferred state [22].

Many other works choose higher virtualization boundaries
than VMs. Cells [2] virtualizes at the user-kernel boundary to
run multiple Android userspace instances atop a single shared
Linux kernel. Similarly, Face-Change [11] uses virtualization
to present a different kernel “view” (memory contents) to
each application. Zap [19] virtualizes at the process boundary,
grouping processes into pods, virtual containers that can
be migrated. Zap’s pods are infectious, i.e., if a process in
the pod communicates with some other entity, that entity
must be included into the pod. These works suffer from the
same problems as VMs: everything above the virtualization
boundary remains entangled. In fact, a recent work [24] from
the authors of Cells and Zap exemplifies that such namespace
virtualization methods cannot solve state entanglement.

Manual Disentanglement: Several previous works man-
ually modify applications, e.g., Microreboot [5], or OS com-
ponents, e.g., CuriOS [7] and Barrelfish/DC [27], to compart-
mentalize important states. The major disadvantage of these
works is that manual modification requires significant engi-
neering effort and a deep understanding of each component,
impractical for existing large-scale OSes like Android.

Memory Protection: Another category of works isolates
entities via special memory regions/mechanisms, e.g., hard-
ware memory tagging [26] or address space customizations
[12, 17, 25]. Nooks [23] combines software memory protec-
tion with function interception to isolate a driver from the
rest of the kernel. Boxify [4] isolates Android applications
in virtual sandboxes but does not fully isolate applications
from failed services. These works provide the foundations of
isolation but cannot identify which entangled states should
be isolated, relying on manual identification (and extraction)
of states. CORSA avoids this problem altogether by guaran-
teeing that each virtual service instance contains only one
application’s state.

Stateless services: One alternative to disentangling states
is to avoid making entities stateful in the first place. RESTful
services used across the Web take this approach by sending
all client state necessary for invoking a remote function to the
server [20], every time for every request. In this way, RESTful
services store no client state persistently on the server and
are easier to migrate, update, or restart. However, the Web
layer can afford RESTful protocols because transactions
are relatively slow and occur between different physical
machines, but IPC and driver layers do not have that luxury.

7. Conclusion

The OS Service model used in modern mobile operating sys-
tems scatters application states across many service processes,
violating the convention that an application’s states are all
stored within its address space. We identify this as one in-
carnation of the state entanglement problem, which presents
challenges to several important computing goals: fault isola-
tion, fault tolerance, application migration, live update, and
application speculation. To address this problem, we propose
CORSA, a novel checkpoint-based virtualization solution that
encapsulates a single application’s service-side state into a
private virtual service instance. We also provide empirical
evidence that CORSA’s checkpoint/restore mechanism can be
implemented with low overhead.

Acknowledgments

The work was supported in part by NSF Award #1422312.
The authors also thank anonymous reviewers and their shep-
herd Dr. Peter Druschel for their useful feedback.

References

[1] Checkpoint/Restore In Userspace.
http://www.criu.org/Main_Page. Accessed:
2015-04-22.

[2] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: A
virtual mobile smartphone architecture. In Proc. ACM SOSP,
2011.

[3] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent
checkpointing for cluster computations and the desktop. In
Proc. IEEE IPDPS, 20009.

[4] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von
Styp-Rekowsky. Boxify: Full-fledged app sandboxing for
stock Android. In Proc. USENIX Security, 2015.

[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot - a technique for cheap recovery. In Proc.
USENIX OSDI, 2004.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proc. USENIX NSDI, 2005.

[7] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell.
CuriOS: Improving reliability through operating system
structure. In Proc. USENIX OSDI, 2008.

[8] J. Duell. The design and implementation of Berkeley Lab’s
Linux checkpoint/restart. Technical report, Lawrence Berkeley
National Laboratory, 2005.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. ACM SIGOPS Oper. Syst.
Rev., 2002.

[10] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Safe and
automatic live update for operating systems. In Proc. ACM
ASPLOS, 2013.

[11] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu.
FACE-CHANGE: Application-driven dynamic kernel view
switching in a virtual machine. In Proc. IEEE DSN, 2014.

[12] G. C. Hunt and J. R. Larus. Singularity: Rethinking the
software stack. SIGOPS Oper. Syst. Rev., 2007.

[13] A. Kadav and M. M. Swift. Live migration of direct-access
devices. ACM SIGOPS Oper. Syst. Rev., 2009.

[14] M. Kozuch and M. Satyanarayanan. Internet suspend/resume.

In Proc. ACM HotMobile, 2002.

[15] J. Lawall and G. Muller. Efficient incremental checkpointing
of Java programs. In Proc. IEEE DSN, 2000.

[16] J. Liedtke. On micro-kernel construction. In Proc. ACM
SOSP, 1995.

[17] A. Lindstrom, J. Rosenberg, and A. Dearle. The grand unified
theory of address spaces. In Proc. ACM HotOS, 1995.

[18] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of

virtual machine based on full system trace and replay. In Proc.

ACM HPDC, 2009.

[19] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of Zap: A system for migrating computing
environments. In Proc. USENIX OSDI, 2002.

[20] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly
Media, Inc., 2008.

[21] T. Suezawa. Persistent execution state of a Java virtual
machine. In Proc. ACM Java Grande Conf., 2000.

[22] A. Surie, H. A. Lagar-Cavilla, E. de Lara, and
M. Satyanarayanan. Low-bandwidth VM migration via
opportunistic replay. In Proc. ACM HotMobile, 2008.

[23] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. In Proc. ACM
SOSP, 2003.

[24] A. Van’t Hof, H. Jamjoom, J. Nieh, and D. Williams. Flux:
Multi-surface computing in Android. In Proc. EuroSys, 2015.

[25] E. Witchel, J. Cates, and K. Asanovi¢. Mondrian memory
protection. In Proc. ACM ASPLOS, 2002.

[26] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis.
Hardware enforcement of application security policies using
tagged memory. In Proc. USENIX OSDI, 2008.

[27] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe.
Decoupling cores, kernels, and operating systems. In Proc.
USENIX OSDI, 2014.

