
Kevin Boos, PhD

July 28, 2022 @ Tsinghua

Theseus: a clean-slate
OS written in Rust

Theseus Systems
github.com/theseus-os
www.theseus-os.com

https://github.com/theseus-os/
http://www.theseus-os.com

Theseus in a nutshell

● Safe-language SAS/SPL OS written from scratch in Rust

● Promotes intralingual design:
 → maximally empower/leverage the language and compiler
○ Unify language-level and OS-level view/understanding of resources
○ Go beyond safety: shift resource management into compiler

● Original research goals: → Evolvability: easy live update
 → Flexibility in OS composition

 → Availability via robust fault recovery

2

Outline

● Intro – what is a safe-language OS?

● Why Rust?

● Key aspects of Theseus’s design
○ OS structure of many tiny components w/ runtime-persistent bounds
○ Intralinguality: maximally leverage compiler/language strengths

● Recent work: safe legacy compatibility via WASM

● Future directions & research
○ Cross-platform device drivers via WASM + WASI-ddeseus_cargo hack)
○ Easier verification of type-based invariants

● Concluding remarks
3

Quick aside: what is a safe-language OS?

● Key components are written in a safe language
○ Most still have unsafe sub-language runtime layers

● Relies on language safety features to:
a. Protect sensitive data/functionality from unprivileged entities
b. Ensure isolation between “processes” (tasks)

● Foregoes hardware protection in some way
○ Single privilege level: all code runs in ring 0 (kernel space)
○ Single address space: all code shares a single set of addresses

4

Conventional OSes vs. Theseus

5

Monolithic OS

App App App

Microkernel OS

App App App

user

kernel

= address space

Theseus OS

VGA
indire
ction
layer

user

kernel

Pros & Cons of safe-language OSes

● Efficiency: no privilege level
or address space switching

● Simple programming model,
à la regular user programs

● Early detection: problems can
be caught by compiler

6

● All components must be
written in safe language
○ Hard to incorporate legacy code

● Language safety isn’t free
○ Overhead of bounds checks, etc

Key idea: strong type system prevents unintended behavior
 → Enforced statically by compiler, not by hardware at runtime

Why Rust?

7

Initially, Rust was just a coincidental choice

● First heard of Rust at Linux
Embedded Conference 2017

● When starting from scratch, why
use something exhaustively
studied?
○ Less potential for unique

discoveries in the future

8

use Rust?

Rust offers a better path forward

● Inspired by experience: difficulty of Linux kernel programming
○ Mostly memory management for custom device virtualization/sharing

● (Old) Rust site: confident, productive systems programming

● Peeking ahead, it worked!
○ Freshmen undergrads with no coding experience

have successfully contributed to Theseus

“Rust has clear safety benefits!” – Captain Obvious
9

Rust checks the boxes for a safe-language OS

Minimum required language features:

1. Naming visibility
○ Can’t access private things (data, types, functions) you can’t name

2. Capability-like objects
○ Must acquire an object to invoke its methods or access its data

3. Classify and forbid certain “unsafe” operations
○ e.g., arbitrary re-interpretive type casting or pointer dereferencing
○ Prevent bypassing the above rules for type & memory safety

10

Example:

how Theseus’s page allocator uses Rust
to uphold safe-language OS guarantees

11

Naming visibility

● Typically relies on modifier keywords: public, private, etc
○ Must be enforced by type system

12

pub fn allocate_pages_at(

 vaddr: Option<VirtualAddress>,

 num_pages: usize

) -> Result<AllocatedPages, AllocError> {...}

fn adjust_chosen_chunk(

 chosen_chunk: &mut Chunk,

 new_start_page: Page,

 new_size: usize

) -> Result<AllocatedPages, AllocError> {...}

pub struct AllocatedPages {

 pages: PageRange, // <-- private field

}

assert_not_impl!(AllocatedPages: DerefMut, Clone);

impl AllocatedPages {

 fn from_free_chunk(c: &Chunk) -> AllocatedPages {

 AllocatedPages {

 pages: chunk.pages,

 }

 }

}

Capability-like Objects (1/2)

● Must have an object to access its data or invoke its functions
○ Can restrict who is able to acquire which types of objects

13

pub fn allocate_pages_at(

 vaddr: Option<VirtualAddress>,

 num_pages: usize

) -> Result<AllocatedPages, AllocError> {

 if !FREE_PAGE_LIST.contains(vaddr) {

 return AllocError::AddressNotFree;

 }

 ... // continue to allocation routine

}

fn func1() {

 let pages = allocate_pages_at(Some(0x5000), 10);

 // success, `pages` can be used

}

fn func2() {

 let pages = allocate_pages_at(Some(0x6000), 2);

 // failure, `pages` is an AddressNotFree error,

 // cannot obtain two overlapping ranges of pages

}

Capability-like Objects (2/2)

● AllocatedPages is one of the objects needed to map memory
○ Represents the capability to exclusively access a piece of virtual memory

14

pub fn map_memory(

 pages: &mut PageTable,

 pages: AllocatedPages,

 frames: AllocatedFrames,

 flags: EntryFlags

) -> Result<MappedPages, MapError> {

 ...

}

fn map_framebuffer() {

 let pages = allocate_pages_at(Some(0x1000_0000), 1024)?;

 let frames = allocate_frames_at(Some(0xFD00_0000), 1024)?;

 // now we have (some of) the capabilities needed to map memory

 let mapped_pages = memory::map(..., pages, frames, WRITABLE)?;

 // now we have the capability needed to access that memory

 let framebuffer: &[[Pixel]; width]; height] = mapped_pages.as_type(...)?;

 // now we have the capability to treat (access) that memory

 // as a framebuffer (a 2-D array of Pixels)

 ...

}

Must be able to forbid unsafe operations (1/2)

● Must disallow circumventing type/memory safety rules
○ No arbitrary re-interpretive casting or pointer dereferencing

15

fn type_safety_works() {

 let mut pages: AllocatedPages = allocate_pages(10)?;

 pages.end += 5; // visibility error, thanks to type safety

}

unsafe { &*tuple_ptr };

pub struct AllocatedPages {

 pages: PageRange,

}

fn bypassing_type_safety() {

 let mut pages: AllocatedPages = allocate_pages(10)?;

 let pages_ptr = &pages as *mut AllocatedPages;

 let pages_ptr_value: usize = pages_ptr as usize;

 let tuple_ptr = pages_ptr_value as *mut (usize, usize);

 let (start, mut end) = *tuple_ptr; // error, requires unsafe

 end += 5;

}

Must be able to forbid unsafe operations (2/2)

● Must disallow circumventing type/memory safety rules
○ No arbitrary re-interpretive casting or pointer dereferencing

16

fn access_kernel_memory() {

 let kernel_address: usize = 0xFFFFFFFF80001000;

 let ptr_to_kernel_mem = kernel_address as *mut [u8; 1000];

 println!("Kernel memory: {:?}", *ptr_to_kernel_mem);

}

unsafe { *ptr_to_kernel_mem };

Rust requires such operations
that violate type/memory safety
 to exist within unsafe blocks.

C permits such operations
without any checks.

Safe languages partition trust and safety

● Unfortunately, unsafety is unavoidable in OS kernel code
○ Low-level instructions that directly interact with hardware

● Trusted core code is permitted to use unsafety
○ Ideally, unsafety should be minimized

● Unsafe code is banned in untrusted third-party code
○ e.g., applications, kernel extensions like drivers, extra OS services

17

● Isolation/protection is derived from type system’s constraints:
safe code can only access data and functionality permitted by types

Theseus Architectural Overview

18

Original Theseus design principles

19

P1. Require runtime-persistent bounds for all components
○ Components should be elementary in size and scope

P2. Maximize the power of the language and compiler
○ Intralingual design and implementation

P3. Avoid state spill
○ Clearer, more explicit state management and propagation

OSDI 2020

P1: OS structure of many tiny components

20

● Each component is a cell
○ Software-defined unit of modularity

● Cells are currently based on crates
○ Elementary unit of compilation
○ Code + data + dependencies
➢ Promote source-level mods into distinct crates

● All components execute in SAS/SPL
○ Still uses virtual addressing by default

■ Easier to obtain contiguous memory regions
■ Enables protection against stack overflow

● Application vs. kernel distinction is minor

Theseus OS

user

kernel

C
F
Q
po
lic
y

VGA
indir
ectio

n
layer

dependencies

P1: Runtime-persistent cell bounds

21

● All cells are loaded & linked at runtime
○ Not just drivers or kernel extensions

● Thus, Theseus tracks cell bounds
○ Location & size in memory
○ Bidirectional dependencies at

section-level granularity
○ Ensures clean separation between sections

● Cell metadata facilitates cell swapping mechanism
○ Useful for live evolution, fault recovery, etc

Consistent and complete view of cells

22

Implementation
time

Build
time

Run
time

C

S S S

● Developer and OS both see the same view of cells

● SAS + SPL structure provides completeness
○ All components across all system layers are observable as cells
○ Single cell swapping mechanism is uniformly applicable at any layer;

can be jointly applied across layers

Theseus build process

23

fully-linked
binary

(base image)

Compiler

Linker

● Split build process; defer but verify linkage
○ OS image is a collection of crates’ raw object files

Bootstrapping Theseus with the nano_core

● Problem: cannot execute an unlinked raw object file
● nano_core: minimal set of crates statically linked into boot image

○ Not a barrier to evolution, constituent cells are replaced after bootstrap

24

timers

task
mgmt

memory
protection

scheduling

IPC

syscalls virtual
memory

I/O
interrupts

boot
strap

crate
loading

I/O stub
drivers

microkernel nano_core

P2: Intralingual Design

● Maximally empower the Rust compiler
○ Leverage language strengths to go beyond safety
○ Shift responsibilities (e.g., resource bookkeeping) from OS into compiler

● Two parts of intralingual design:

1. [view] → Match compiler’s expected execution model

2. [understand] → Implement OS and resource semantics
fully within the strong, static type system;

 → Use existing abstractions provided by the language
and known to the compiler

25

1. Single address space environment
○ Single set of visible virtual addresses
○ Bijective 1-to-1 mapping from virtual to physical address

2. Single privilege level
○ Only one world of execution (ring 0)

3. [Previously] Single allocator instance
○ Rust expects one global allocator to serve all alloc requests
○ Theseus implements multiple per-core heaps

within the single GlobalAlloc instance
○ Time to revisit this with the new alloc API!

Matching compiler’s execution model

26

Intralinguality in brief: removing semantic gaps

27

(0) Use & prioritize safe code as much as possible

1. Identify invariants to prevent unsafe, incorrect resource usage
○ Express resource semantics in terms of existing language-level mechanisms

■ e.g., use refs/Arc/Rc for safe aliasing instead of raw pointers

○ Use type system to make invalid resource states unrepresentable
■ e.g., newtype pattern, narrow trait bounds, session types

○ Enables compiler to subsume OS’s resource-specific invariants

2. Preserve language-level context across interfaces
○ e.g., type info, lifetime, ownership/borrowed status
○ Counter-example: type info is lost across syscall boundary

Go beyond safety: prevent resource leakage

● Theseus implements custom unwinder from scratch
○ Independent of existing libraries → works in core OS contexts
○ Simpler: no lang-specific personalities, no DLL eh_frame registration
○ Flexible: supports Theseus’s unique many-component structure
○ Safer: unwinding context is type-safe; landing pad addresses checked

● Enables compiler-driven resource management
○ Developer defines what (impl Drop), compiler determines when
○ Can ignore complexity of exception cleanup paths

● Relieves OS from the burden of resource bookkeeping
○ Each app/task bookkeeps resources for itself by virtue of ownership
○ OS lacks specific details of resource or its cleanup routine

28

Why unwinding is crucial in Theseus

29

fn print_tasks() {

 let tasklist_ref = task::get_tasklist();

 let locked_tasklist = tasklist_ref.lock();

 if things_are_ok {

 // print tasks

 } else {

 panic!("oops, unexpected error");

 }

 // usually, the tasklist lock is released here

}

MutexGuard<Vec<Task>>

impl<T> Drop for MutexGuard<T> {

 fn drop(&mut self) {

 self.lock.store(false, ...);

 }

}

● Ensures fault isolation in the midst of a failed task
○ Truly intralingual method of resource cleanup & revocation

Sorry, that was dense!

Here are some examples…

30

Example: memory management

● Challenges with conventional memory management:
○ Map, remap, unmap operates on raw handles (virtual addresses)
○ Unsafety due to semantic gap between OS-level and language-level

understanding of memory usage
○ Extralingual aliasing: mapping multiple pages to the same frame

● Solution: the MappedPages abstraction
○ Bridges semantic gap to apply Rust safety checks to

auxiliary (non-heap, non-stack) memory areas
○ Enables inherently unsafe type transformations via struct overlays

31

pub struct MappedPages {

 pages: AllocatedPages,

 flags: EntryFlags,

 ...

}

MappedPages code overview

● Virtually contiguous
memory region

● Cannot create invalid or non-bijective mappings
○ map() accepts only owned AllocatedPages/Frames, consuming them
○ Cannot be reused for duplicate mappings – thanks, affine types!

32

pub fn map(pages: AllocatedPages, frames: AllocatedFrames,

 flags: EntryFlags, pg_tbl: &mut PageTable,

) -> Result<MappedPages> {

 for (page, frame) in pages.iter().zip(frames.iter()) {

 let mut pg_tbl_entry = pg_tbl.walk_to(page, flags)?

 .get_pte_mut(page.pte_offset());

 pg_tbl_entry.set(frame.start_address(), flags)?;

 }

 Ok(MappedPages { pages, flags, ... })

}

Ensuring safe access to memory regions

● Guaranteed mapped while held
○ Auto-unmapped only upon drop
○ Prevents use after free, double free

● Can only borrow memory region
○ Overlay sized type atop regions
○ Forbids taking ownership of

overlaid struct, a lossy action
○ POD type bound on T: FromBytes
○ Others not shown: as_slice(),

as_type_mut(), as_slice_mut()

33

impl Drop for MappedPages {

 fn drop(&mut self) {

 // unmap: clear page table entry, inval TLB.

 // AllocatedPages are auto-dropped & dealloc’d.

 }

}

impl MappedPages {

 pub fn as_type<'m, T: FromBytes>(

 &'m self, offset: usize

) -> Result<&'m T> {

 if offset + size_of::<T>() > self.size() {

 return Error::OutOfBounds;

 }

 let t: &'m T = unsafe {

 &*((self.pages.start_address() + offset) };

 Ok(t)

 }

}

Safely using MappedPages, e.g., for MMIO

● Overlaid type cannot have
non-POD types

● Unwinding prevents dangling
allocations/mappings
○ Ensures mp_pgs is unmapped,

even upon panic

● Sharing must occur at
language level
○ e.g., Arc<MappedPages>,

 &mut MappedPages
34

struct HpetRegisters {

 pub capabilities_and_id: ReadOnly<u64>,

 _padding: [u64, ...],

 pub main_counter: Volatile<u64>,

 ...

}

fn test_hpet() -> Result<()> {

 let frames = allocate_frames_at(get_hpet_paddr(), 1)?;

 let pages = allocate_pages(frames.count())?;

 let mp_pgs = map(pages, frames, flags, pg_tbl)?;

 let hpet: &HpetRegisters = mp_pgs.as_type(0)?;

 let ticks = hpet_regs.main_counter.read();

 print!("HPET ticks: {}", ticks);

 // `mp_pgs` auto-dropped here

}

MappedPages compiler-assisted invariants

1. Virtual-to-physical mapping must be bijective (1 to 1)
○ Prevents extralingual aliasing

2. Memory is not accessible beyond region bounds
3. Memory region must be unmapped exactly once

○ After no more references to it exist
○ Must not be accessible after being unmapped

4. Memory can only be mutated or executed if mapped as such
○ Avoids page protection violations

35

MappedPages statically prevents invalid page faults

36

pub struct Task {

 runstate: RunState,

 saved_stack_ptr: VirtualAddress,

 stack: Stack,

 entry_crate: Arc<LoadedCell>,

 namespace: CrateNamespace,

}

Example: ensuring a Task-related invariant

● All memory accessible from a task
must persist throughout its execution
○ Rust has no 'task or 'stack lifetime

● Solution: create chain of ownership
○ task → crate containing task entry function

→ crate’s other transitive dependencies
pub struct LoadedCell {

 sections: Set<Arc<LoadedSection>>,

 text_pages: Option<MappedPages>,

 rodata_pages: Option<MappedPages>,

 data_pages: Option<MappedPages>,

 ...

}

pub struct LoadedSection {

 name: String,

 typ: SectionType,

 sections_i_depend_on: Vec<Arc<LoadedSection>>,

 sections_dependent_on_me: Vec<Weak<LoadedSection>>,

}

Memory cannot be unmapped out
from underneath an executing task!

sections in
other cells

Other tasking invariants are a superset of std::thread

37

● Consistent type parameters across all task lifecycle functions
○ Strong typing info is never lost

● Only extralingual/unsafe tasking operation is context switch

pub fn spawn<F, A, R>(func: F, arg: A)

 -> Result<TaskRef>

 where A: Send + 'static,

 R: Send + 'static,

 F: FnOnce(A) -> R,

fn task_wrapper<F, A, R>() -> !

 where A: Send + 'static,

 R: Send + 'static,

 F: FnOnce(A) -> R,

fn task_cleanup_success<F, A, R>(exit_val: R)

 where A: Send + 'static,

 R: Send + 'static,

 F: FnOnce(A) -> R,

fn task_cleanup_failure<F, A, R>(reason: KillReason)

 where A: Send + 'static,

 R: Send + 'static,

 F: FnOnce(A) -> R,

Summary: Intralingual design

● Unifies the OS’s view & understanding of the system with the
compiler’s view & understanding of language constructs
○ Rust compiler can check many built-in safety invariants about

the semantic usage of threads, stacks, and the heap

● Extends compiler-checked invariants to all OS-known resources
○ Ensures safe resource management (acquire, access, release)
○ Applies to refcounts, allocations, locks, any reversible operation

● Facilitated by ownership model + borrow checker + unwinder
○ Resource freed after final exclusive owner is finished with it (scope ends)

38

Ensuing benefits of intralingual design

39

OS need not maintain
bookkeeping states

Reduces states spilled
into OS/kernel

Compiler takes over
resource bookkeeping

Approaches end-to-end safety
from apps to kernel core

Shifts semantic runtime errors
into compile-time errors

Removes gaps in
compiler’s code
understanding

Strengthens isolation

Shifting from research to usability

40

Forging a path ahead with WebAssembly

The path from research to usability

● Original focus: push the limits of OS design
○ Prioritized unique research goals over usability
○ De-prioritized feature completeness & legacy compatibility
○ Implemented OS features only as needed

● Early 2021 Theseus: still a relatively immature research OS
○ Limited support for standard legacy interfaces (libc, std library)

● Research novelty is cool, but having users is even cooler

41

➢ How do we overcome this challenge?

● Recall a major downside of safe-language OSes:

Legacy compatibility in a safe-language OS?

42

Cons of safe-language OSes
● All components must be written

in safe language
○ Hard to incorporate legacy code

○ Unsafe components can circumvent type and memory safety rules,
breaking isolation otherwise guaranteed by the compiler

A modern solution: WebAssembly (WASM)

● ❓ We need isolation for unsafe code atop Theseus

● ✅ WASM offers a sandboxed execution environment
○ Portable execution format, simple & clear machine model
○ Like Java bytecode, but better and language-independent
○ Initially intended for running atop web browsers

● WASM on Theseus → safely run legacy code
○ Perfect fit for single operator-controlled, efficient environments:

lightweight cloud, serverless, FAAS, embedded systems

43

Compiling to WASM is easy & built-in

44

(module

 (func (export "addTwo") (param i32 i32) (result i32)

 local.get 0

 local.get 1

 I32.add))

pub fn addTwo(a: i32, b: i32) -> i32 {

 a + b

}

int addTwo(int a, int b) {

 return a + b;

}

clang --target wasm32 \

 add.c -o add.wasm

rustc --target wasm32-unknown-unknown \

 add.rs -o add.wasm

WASM runtime
(wasmtime, wasmer,
wasmedge, etc)

How WASM works, from compile to run

45

WASM
module

compile

compiler,
toolchain,
interfaces

wasm-
pack

emscripten

WASI

Host OS / Machine

WASM
module

WASM
native
binary

AOT/JIT

Other apps

compile-time runtime

● Current work: a two-pronged approach
1. ✅ Standalone interpreted WASM runtime (using wasmi)
2. ✅ Port of Wasmtime to Theseus for JIT/AOT-compiled WASM execution
○ ✅ Basic WASI implementation
○ 👷 Tighter integration of WASM modules with Theseus cells
○ 🔜 Support for more WASM interfaces, e.g., WebGPU

● Solves the classic safe OS legacy incompatibility problem
➢ WASM system model offers sandbox for unsafe programs
➢ Can run in no_std environment, e.g., within kernel
➢ Full interop between WASM modules and native Theseus components
➢ Easier to package up dependencies atop an immature OS

Towards a WASM-native system

46

(WASM on
bare metal)

47

The first no_std system to run Wasmtime

● Massive porting effort, many complex dependencies and
 platform-specific code

48

WASM modules can run side-by-side
with Theseus apps and kernel components

49

CFQ
polic

y

VGA
indirectio
n layer

CFQ
polic

y

wasmtime

WASM module

Native cell
(Rust crate)

wasmi

● Future integration and full interop

Wasmtime & wasmi demo

50

1. Simple WASM module
AOT-compiled for and
running in Wasmtime

2. Complex C++ calculator
app run using the wasmi
interpreter
○ Uses WASI “syscalls"

Future work and research

51

“Universal” cross-platform device drivers via WASM

Challenge: new OSes lack hardware support

● Reimplementing all device drivers for a new OS isn’t scalable
○ Lack of drivers will hinder adoption

● Key insight for scalability:
only one* OS-driver interface, many driver-device interfaces

52

Challenge: new OSes lack hardware support

● Reimplementing all device drivers for a new OS isn’t scalable
○ Lack of drivers will hinder adoption

● Key insight for scalability:
only one* OS-driver interface, many driver-device interfaces

53

Host OS
subsystems

Driver

DeviceDriver

Driver

Device

Device

*or few, per-class

Using WASM to abstract OS-driver interface

54

● Goal: reuse drivers across different OSes → “universal” drivers
○ Decoupling drivers from the OS is a long-held desire in academia
○ No major success stories for cross-platform drivers

● With the advent of WASM, the time is right to try again!

● Idea: WASI-dd, a WASI-like interface for device drivers
○ Re-target existing NetBSD drivers to compile against WASI-dd

■ Utilize existing rumpkernel + infrastructure for quick start (later, Linux)
○ Implement WASI-dd runtime in Theseus

+ https://research.aalto.fi/en/publications/flexible-operating-system-internals-the-design-and-implementation

55

WASI-dd
Interface

Initialization,
Cleanup

Device
Identification

Memory
Buffer Access

& Mgmt

Interrupt
Handling

MMIO &
Port I/O

WASI-dd Implementation

Host Platform
Components

Source OS
Components
(e.g., NetBSD)

Native
Driver

Host OS
Memory
Manager

Host OS
Interrupt

Subsystem

Host OS
I/O

Subsystem

Source OS
Additions

WASI-dd stub for Source OS

WASI-dd API calls

Source OS Driver Model/API

Host Platform
Additions

WASI-dd
diagram

WASI-dd benefits extend beyond Theseus

56

● Reuse & portability: implement driver once, run “anywhere”
● Isolation: drivers as WASM modules run in a sandbox

○ Capabilities prevent drivers from invoking other kernel/OS functionality
or accessing other device resources (memory/registers/ports)

● Bidirectional safety (partial or full) is possible

Some drawbacks:
● Potentially reduced performance due to WASM overhead
● Need glue layers and possible driver changes
● Host environment must support WASM

Future work and research

57

Easier verification based on language safety

Formally proving intralingual invariants

● Motivation: low-level bugs could invalidate high-level invariants
○ Frame allocator bug → bijective mapping violation → NIC DMA failure

● Goal: increase reliability of system invariants
without huge proof burden of full system verification
○ Correctness of higher-level invariants is modular & composable:

can be built atop a correct implementation of lower-level invariants

58

Determine
required

invariants

Encode
invariants
into type
system

Create proof outline graph:
○ Clarifies assumptions
○ States axioms
○ Identifies formally-

verified invariants

Write prose proof
based on

type-system
guarantees and

formal verification

Ramla Ijaz,
OSDI’22
Poster

Creating MappedPages (mapping memory)

59

FREE PAGE LIST

Allocated
Pages

pChunk

FREE FRAMES LIST

Allocated
Frames

Remove
from list split

split

Mapped
Pages

+

+

vChunk

Remove
from list

Chunk: range of unallocated pages/frames

Invariant to be
proven

Invariant enforced
by verification

Chunk: range of unallocated
 pages/frames
AP: range of AllocatedPages
AF: range of AllocatedFrames

Proof outline
for bijective
mapping
invariant

60

1-to-1 relationship between Virtual Pages and Physical Frames

AP/AF are
non-cloneable

 AP/AF can only
be used once

(to create MappedPages)

No two AP/AF
ever overlap num AP = num AF

Chunk is
non-cloneable

 A Chunk can only
be used once

(to create an AP/AF)

No 2 Chunks ever
overlap

Dropping an AP/AF
converts it into the original
Chunk it was created from

Splitting a chunk
consumes it and produces

disjoint chunks

The Chunk constructor
only creates new chunks

in non-overlapping ranges

Chunk constructor postcondition:
chunk.range wasn’t in the old list
∧ chunk.range added to list

orig_chunk.range =
∑chunk[i].range
∀i.∀ j. i != j ∧

no_overlap(chunk[i], chunk[j])

Chunk.range =
AP/AF.range

Assumption: only 3 ways to create a chunk

Invariant enforced
by type system

Concluding Remarks

61

Recap: Theseus OS design & goals

1. Structure of many tiny cells (crates)
○ Runtime loading/linking → persistent, distinct bounds for all entities

2. Maximally empower the language/compiler via intralinguality
○ Go beyond safety: subsume OS correctness invariants into compiler checks
○ Approach end-to-end “gapless” safety from apps to kernel core
○ Shift resource bookkeeping duties into compiler, prevent leakage

3. Originally aimed to facilitate evolvability and availability
○ Now targeting wider feature compatibility, e.g., WASM

→ Roughly 65K lines of Rust, 900 lines of assembly
62

Call for collaboration – we need help!

● Theseus is fully open-source
○ All development, artifacts,

and discussions are public
○ Chat with us on GitHub/Discord,

link at theseus-os.com

● We welcome contributions
from anyone and everyone
○ Already successfully collaborated

with several Tsinghua alumni!
○ Also looking for PhD recruits at Yale!

63

http://www.theseus-os.com

Ramla Ijaz
PhD Student

Acknowledgments

64

Yue Chen, Sid Askary, and Yong He

Dr. Lin Zhong
Professor

Tsinghua Alumnus

Namitha Liyanage
PhD Student

The Ship of Theseus

Thanks! Questions are welcome

65

Theseus in review

● Novel structure of many tiny cells
○ Runtime-persistent bounds for all

● Empower the language & compiler
○ Intralinguality goes beyond safety
○ Shift responsibilities into compile-time

● Safe Rust + WASM for wider compatibility

● Retains flavor of ongoing research
○ WASM drivers, formal verification

github.com/theseus-os/Theseus

https://github.com/theseus-os/Theseus

66

BACKUP SLIDES

67

MOTIVATION

Initially motivated by study of state spill

● State spill: the state of a software component undergoes a
lasting change a result of interacting with another component
○ Future correctness depends on those changed states

● State spill is a root cause of challenges in computing goals
○ Fault isolation, fault tolerance/recovery
○ Live update, hot swapping
○ Maintainability
○ Process migration
○ Scalability

...
68

Simple example of state spill

69

App A

App B

OS ServiceOS Service

Missing or
inconsistent states

Causes hard crash or
undefined behavior

clients server

Motivation beyond state spill

70

● Modern languages can be leveraged for more than safety
○ Attracted to Rust due to ownership model & compile-time safety
○ Goal: statically ensure certain correctness invariants for OS behaviors

● Evolvability and availability are needed, even with redundancy
○ Embedded systems software must update w/o downtime or loss of context
○ Datacenter network switches still suffer outages from software failures

and maintenance updates

BACKUP SLIDES

71

Intralingual

Extralingual vs. Intralingual

⚠ Unmapping memory out from
underneath the language level
whenever the OS decides 72

✅ Unmapping memory only when
language proves it okay

Outside of (below) the language Within the language

Language cannot observe underlying
resource management actions
● OS treated as black box

Language can observe, understand, and
control all resource management actions
● Why not open up the black box?

Must trust lower layers to uphold assumptions Can holistically check lower layers

Use separate mechanisms beyond language Leverage existing language mechanisms

Problems likely discovered at runtime Problems likely found at compile-time

Intralingual resource revocation

● Truly safe resource revocation must be language-driven
○ Exploit unwinding to trigger revocation intralingually
○ Unwinder supports app tasks and kernel code
○ Reuses code routines for cleanup during normal execution!

● By default, revoke resources at task granularity
○ Is killing a task too coarse-grained? Nope!
○ Only way to ensure safety

● Revocation-aware types must be used when needed
○ Options, weak references
○ Forces program logic to explicitly handle possibility of revoked resource

73

BACKUP SLIDES

74

Problems with conventional
memory mapping

Conventional memory mapping (using vaddr)

75

 /// Maps the virtual page to the physical frame. (`self` is a PageTable)

 pub fn map(&mut self, vaddr: usize, paddr: usize, flags: EntryFlags, ...) -> Result<usize, Error> {

 let page = Page::containing_address(vaddr);

 let mut p3 = self.p4_mut().next_table_create(page.p4_index(), flags, allocator)?;

 let mut p2 = p3.next_table_create(page.p3_index(), flags, allocator)?;

 let mut p1 = p2.next_table_create(page.p2_index(), flags, allocator)?;

 if !p1[page.p1_index()].is_unused() {

 return Error::PageInUse;

 }

 p1[page.p1_index()].set(frame, flags | PRESENT); // create the actual mapping

 Ok(page.starting_address())

 }

Conventional memory mapping (using vaddr)

76

 /// Maps the virtual page to the physical frame. (`self` is a PageTable)

 pub fn map(&mut self, vaddr: usize, paddr: usize, flags: EntryFlags, ...) -> Result<usize, Error> {

 ... // create the actual mapping

 Ok(page.starting_address())

 }

 pub fn main() {

 let vaddr: usize = map(0x1000, 0x2000, WRITABLE)?;

 let hpet: HpetRegisters = unsafe {

 *(vaddr as *const HpetRegisters)

 };

 println!("HPET counter ticks: {}", hpet.main_counter);

 }

struct HpetRegisters {

 pub capabilities_and_id: ReadOnly<u64>,

 _padding: [u64, ...],

 pub main_counter: Volatile<u64>,

 ...

}

 What happens if someone unmaps 0x1000?
 What happens if hpet is used afterwards?

Backup Slides

77

Evolution & Fault Recovery

Live evolution via cell swapping

78

CA

Existing CellNS

S S S S

CB

S S

CC

S S S

Live evolution via cell swapping

i. Load all new cells into
empty CellNamespace

79

CA

Existing CellNS

S S S S

CB

S S

CC

S S S

CK

S S S

CJ

S S

New Empty CellNS

Live evolution via cell swapping

i. Load all new cells into
empty CellNamespace

ii. Verify dependencies
80

CA

Existing CellNS

S S S S

CB

S S

CC

S S S

CK

S S S

CJ

S S

New Empty CellNS

?

Live evolution via cell swapping

i. Load all new cells into
empty CellNamespace

ii. Verify dependencies

CA

Existing CellNS

S S S S

CB

S S

CC

S S S

CK

S S S

CJ

S S

iii. Redirect (re-link) dependent
old cells to use new cells
→ update stack, transfer states

New Empty CellNS

✓

81

Live evolution via cell swapping

i. Load all new cells into
empty CellNamespace

ii. Verify dependencies
82

CA

Existing CellNS

S S S S

CB

S S

CC

S S S

CK

S S S

CJ

S S

iii. Redirect (re-link) dependent
old cells to use new cells

iv. Remove old cells, clean up

Theseus facilitates evolutionary mechanisms

● Runtime-persistent bounds simplify cell swapping
○ Dynamic loader ensures non-overlapping memory bounds
○ No size or location restrictions, no interleaving

● Spill-free design of cells results in:
○ Less (and faster) dependency rewriting and state transfer
○ More safe update points

● Cell metadata accelerates cell swapping
○ Dependency verification = quick search of symbol map
○ Only scan stacks of reachable tasks

■ Tasks whose entry functions can reach functions/data in old crates

83

Realizing availability via fault recovery

● Many classes of faults prevented by Rust safety & intralinguality
○ Focus on transient hardware-induced faults beneath the language level

84

● Cascading approach to fault recovery
Stage 1: Tolerate fault: clean up task via unwinding
Stage 2: Restart task: respawn new instance
Stage 3: Reload cells: replace corrupted cells

● Recovery mechanisms have few dependencies
○ Works in core OS contexts, such as CPU exception handlers
○ Microkernels need userspace, context switches, interrupts, IPC

increasingly
intrusive

● Extend task spawning infrastructure with spawn_restartable()
○ Useful for critical system tasks, e.g., window/input event manager

Safe & intralingual restartable tasks

85

pub fn spawn_restartable<F, A, R>(func: F, arg: A) -> Result<TaskRef>

 where A: Send + Clone + 'static,

 R: Send + 'static,

 F: Fn(A) -> R + Send + Clone + 'static

{

 ...

}

Compiler prevents unsound
restartable tasks!

Argument must be safely
duplicated and thread-safe

Return type must be
thread-safe

Function must be
executable multiple times

Reloading corrupted cells

● Reload new instance of corrupted cell, replace old one
○ Simplest possible case of cell swapping
○ Addresses corruption in text or rodata sections

86

CA

CellNamespace

S S S S

CB

S S

CC

S S S

CA*

S S S S

Theseus fault recovery works in OS core

● Fault recovery mechanisms have few dependencies
○ Many subsystems can fail without jeopardizing recovery
○ Only need basic execution environment for unwinding

(access stack, execute functions)
○ Other stages need task spawning and cell swapping

● Fault-tolerant microkernels require many working subsystems
○ Userspace, context switches, interrupts, IPC, etc

87

Flexibility via CellNamespaces: OS personalities

88

● Flexibility → mix-n-match crates across trees
○ Arbitrary personalities via different versions of a crate in each namespace
○ Efficient due to shared crate references + software copy-on-write

CA CB

BACKUP SLIDES

89

Evaluation

Evaluation highlights

● Case studies demonstrate complex live evolution scenarios

● Fault recovery has 69% success rate
○ Also recovers from microkernel-level faults (vs. MINIX 3)

● Intralingual and spill-free designs have mild cost

● No major overhead in microbenchmarks vs. Linux
○ Same for runtime-persistent bounds (dynamic linking)

90

Live Evolution from sync → async “IPC”

● Theseus advances evolution beyond monolithic/microkernel OSes
○ Safe, joint evolution of user-kernel interfaces and functionality
○ Evolution of core components that must exist in microkernel

● Do microkernels need to be updated? Change histories say yes
○ IPC is noteworthy change

No state loss evolving
sync → async ITC

91

● Coordinated, multi-part evolution
○ Fix e1000 ring buffer register bug + update client download logic

● No packet loss during evolution
○ States held by client application task, not scattered throughout

● Meta-evolution improves availability without redundancy

Live Evolution to fix unreliable networking

evolution client

OTA update downloader

networking stack

e1000 NIC driver
92

General fault recovery: 69% success

● Injected 800K faults → 665 manifested
○ Ran varied workloads: graphical rendering,

task spawning, FS access, ITC channels
○ Targeted the working set of task stacks,

heap, and cell sections in memory

● Most failures due to lack of
asynchronous unwinding
○ Point of failure (instr ptr) isn’t covered

by compiler’s unwinding table

93

Successful Recovery 461

 Restart task 50

 Reload cell 411

Failed Recovery 204

 Incomplete unwinding 94

 Hung task 30

 Failed cell replacement 18

 Unwinder failure 62

Cost of intralinguality & state spill freedom
MappedPages performs better

94

Safe heap: up to 22% overhead
due to allocation bookkeeping

Map Unmap

total number of mappings

Ti
m

e
(n

s)
,

 4
 K

iB
 p

ag
e Heap impl. threadtest shbench

unsafe 20.27 ± 0.009 3.99 ± 0.001

partially safe 20.52 ± 0.010 4.54 ± 0.002

safe 24.82 ± 0.006 4.89 ± 0.002

times in seconds (s)

Microbenchmarks comparing against Linux
● Reimplemented core LMBench microbenchmarks in safe Rust

○ Did due diligence to give Linux the advantage

● Performance as expected -- no address space or mode switches

95

times in
microseconds (μs)

LMBench Benchmark Linux Theseus

null syscall 0.28 ± 0.01 0.02 ± 0.00

context switch 0.61 ± 0.06 0.34 ± 0.00

create process (task) 567.78 ± 40.46 244.35 ± 0.06

memory map 2.04 ± 0.15 0.99 ± 0.00

IPC (ITC channels) 3.65 ± 0.35 1.03 ± 0.00

Cost of runtime-persistent bounds

● Negligible overhead due to dynamic linking
○ Need more macrobenchmarks for completeness

96times in microseconds (μs)

LMBench Benchmark Theseus (dynamic) Theseus (static)

null syscall 0.02 ± 0.00 0.02 ± 0.00

context switch 0.35 ± 0.00 0.34 ± 0.00

create process (task) 242.11 ± 0.88 244.35 ± 0.06

memory map 1.02 ± 0.00 0.99 ± 0.00

IPC (ITC channels) 1.06 ± 0.00 1.03 ± 0.00

BACKUP SLIDES

97

Limitations

Limitations at a glance

98

● Unsafety is a necessary evil → detect infectious unsafe code

● Reliance on safe language
○ Must trust Rust compiler and core/alloc libraries

● Intralinguality not always possible
○ Nondeterministic runtime conditions, incorporating legacy code

● Tension between state spill freedom and legacy compatibility
○ Make decision on per-subsystem basis, e.g., prefer legacy FS

BACKUP SLIDES

99

Lack of stable ABI
theseus_cargo

prebuilt dependencies

Stable ABI?

Rust language:
No stable ABI
-- not really needed, just need a way to specify pre-built dependencies. Could trust but verify that the provided dependencies
match all build characteristics (target, flags, etc)
-- touches cargo too, which needs a better way to specify a stable, repeatable build plan (deprecated, and the other solution
was also removed)

1. Cargo: supporting pre-built dependencies
○ Or header-like files, in the presence of no stable ABI
○ Restricting to a single pinned compiler version is totally ok

100

● A stable ABI would be great
○ All the world’s Theseus’s problems

would magically disappear!

● Good news: it isn’t really necessary!
… I know, I know

Theseus just needs support
for pre-built dependencies!

Why Theseus has unique needs herein

● System calls usually provide a stable ABI
○ Compilation ends at syscall entry, types are lowered to raw integers
○ No syscalls in a SPL/SAS OS ⇒ no clean linkage boundary

● Needed for out-of-tree build, or to distribute Theseus artifacts
○ Linux kernel can provide kernel headers

■ Assumes library (kernel modules) will be provided later
○ Cargo must build from source, cannot assume future libraries

101

Potential workarounds

1. Use C ABI
○ Inherently unsafe FFI, loses type info
○ Must generate extern “C” bindings
○ Semantically stupid to go from Rust → C → Rust
○ Generics, etc are problematic

2. Fake the existence of build artifacts,
then re-invoke rustc directly

102

theseus_cargo: a major hack/workaround

● Capture verbose output of a real cargo command
○ Shows full details of each rustc invocation
○ Challenge: extremely difficult to parse

■ Reconstructed rustc CLI using clap …. sigh

● Must then re-generate exact correct rustc invocation
○ Dozens of arguments, environment variables, etc

● Fool rustc into using prebuilt crate .rlib files
as if they were just built by cargo from source

103

What rustc commands do we need to change?

● All parts of a rustc command that specify a dependency
○ -L dependency=<dir>

■ Specify a directory where transitive dependencies can be found

○ --extern <crate_name>="<path_to_crate.rmeta/.rlib>"
■ Specify a particular crate’s path (not always needed for all crates)

● Avoid duplicate dependencies
○ Remove dependencies built from source that already exist as prebuilts

● Need to ensure we re-run enough commands
○ Build scripts, proc macro derivations
○ Ignore unchanged builds: new crates that weren’t part of prebuilts

104

Limitations of the theseus_cargo approach

● Must build against exact version of Theseus
○ No mixing crates from two different Theseus builds
○ Theseus’s runtime loader/linker will check this by default

● Compiler version must match across all builds
○ We already guarantee this in Theseus, fairly easy to do so

● … still better than the alternative of unsafe extern C FFI

105

Surely we can improve this?

● Support prebuilt dependencies!

● Expand cargo’s --build-plan
or --unit-graph ?
○ Need full compilation details
○ Allow for inputs too: “hey cargo,

use this precompiled .rlib/.rmeta”

106

BACKUP SLIDES

107

Asynchronous unwinding

Unwinding coverage isn’t perfect

● Problem: Rust (LLVM) lacks asynchronous unwinding
○ Emitted DWARF unwind tables only cover possible panic locations

● CPU exceptions could occur at any point, unknown to language

108

Address
(IP range)

Reg0
Rule

Reg1
Rule

... Reg*
Rule

CFA
Rule

LSDA

0x0 - 0x1b -16 +12 -0x68 0xF8BD...

0x1c - 0x30 0

0x40 - … 0xF8AC...

fn foo(x: usize) {

 let b = Box::new(x);

 if x == 0 {

 // here: covered!

 panic!("oopsie");

 } else {

 let mut val = MY_MUTEX.lock();

 // here: not covered!

 *val += x;

 }

}

❓

Few mitigations for synchronous unwinding

● Solution? None so far!
○ Perhaps other compiler backends could support it? 🙏
○ Crazy idea: insert “cancellation points” after key resources acquired

● Overall, not so bad
○ Theseus strives to make unexpected CPU exceptions impossible
○ Only affects the single stack frame where the exception occurred
○ Experimentally, fault recovery still successful 84% of the time

109

BACKUP SLIDES

110

WASM-native OS

WASM-native OS concept

111

