
 Correct and Performant Device Drivers via Intralingual Design
Ramla Ijaz1, Kevin Boos2, and Lin Zhong1

1 Yale University, 2 Theseus Systems; ramla.ijaz@yale.edu

Theseus OS and Intralingual Design

Theseus introduced intralingual design to maximize
the role of the compiler in OS design [1].

Memory Management Subsystem

Design Methodology

Intralingual + Verification

Proof Outline of Bijective Mapping Invariant
Intralingual invariants assume correctness of the
compiler and manually-inspected code.

● Correctness of higher-level invariants can be
traced back to correct implementation of
lower-level invariants

● Modular verification of lower-level invariants

● Increase reliability of system invariants without
proof burden of full system verification

FREE PAGE LIST

Allocated
Pages

PChunk

FREE FRAMES LIST
Allocated
Frames

Remove
from list split

split

Mapped
Pages

+

+

VChunk

Remove
from list

Chunk = A range of pages/frames that are unallocated
AllocatedPages(AP) = A range of pages that have been allocated
AllocatedFrames(AF) = A range of frames that have been allocated

There is a 1-to-1 relationship between Virtual Pages and Physical Frames

AP/F are
uncloneable

 AP/F can only be
used once to create

a MappedPages

No 2 AP/F ever
overlap num AP = num AF

Chunk is
uncloneable

 A Chunk can only be
used once to create

an AP/F

No 2 Chunks ever
overlap

The Chunk constructor only
creates new chunks in

non-overlapping ranges

Splitting a chunk consumes it
and converts it into chunks

with disjoint ranges.

Dropping an AP/F converts it
into the original Chunk it was

created from

Chunk.range = AP/F.range

orig_chunk.range = ∑chunk[i].range
 ∀i.∀ j. i != j ∧ no_overlap(chunk[i], chunk[j])

Chunk constructor postcondition:
chunk.range wasn’t in the old list

chunk.range added to list

Proof Diagram Key

Invariant enforced by type system Invariant enforced by verification

Assumption: Only 3 ways to create a chunk

[1] Boos, Kevin, et al. "Theseus: an experiment in operating system structure and state management." 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

Motivation

Key Idea

● Bug in frame allocator violated bijective mapping
invariant

● Duplicate frames created → multiple pages
mapped to same frame

● Kept overwriting DMA memory in a network
device driver

1. Match the compiler’s understanding with the
actual execution environment.

● single address space, single privilege level

2. Enable the compiler to check OS safety and
correctness invariants by subsuming
resource-specific invariants into compiler ones.

● sharing resources via Rust’s in-built reference
types

3. Lossless interfaces to preserve language level
context and relationships between types.

● map() interface preserves relationship between
virtual pages and physical frames, so they
cannot be reused

Intralingual Design Principles

Intralingual Design of Memory Management

Four invariants enforced by the type system:

1. Mapping from virtual pages to physical frames is
bijective. (bijective mapping invariant)

2. Memory must not be accessible beyond page
bounds.

3. Memory is only unmapped once, when there are
no outstanding references.

4. A memory region must only be mutable or
executable if mapped as such.

Creation of MappedPages

Invariant to be proven

Determine
required

invariants

Encode
invariants into
type system

Create proof outline graph:
- Clarify assumptions
- State axioms
- Identify formally

verified invariants

Write a prose proof
for a higher-level

invariant based on
type-system

guarantees and
formal verification

