Correct and Performant Device Drivers via Intralingual Design

Ramla ljaz', Kevin Boos?, and Lin Zhong'

"vale University, 2 Theseus Systems; ramla.ijjaz@yale.edu

Theseus OS and Intralingual Design Intralingual + Verification Memory Management Subsystem
Theseus introduced intralingual design to maximize Motivation Creation of MappedPages
the role of the compiler in OS design [1].
e Bug in frame allocator violated bijective mapping FREE PAGELIST Remove it
Intralingual Design Principles invariant vk - ||| — H Spages
. . . e Duplicate frames created » multiple pages
1. Match the compiler’s understanding with the mapped to same frame FREE FRAMES LIST ..
actual execution environment. N | N R e s
. . . o Kept overwriting DMA memory in a network
® single address space, single privilege level device driver
2. Enable the compiler to check OS safety and AlLocatedPages (AB) = A range of pages that have been allocated
COrreCtneSS invariants by subsuming AllocatedFrames (AF) = Arange of frames that have been allocated
Key Idea

resource-specific invariants into compiler ones. . L . .
Proof Outline of Bijective Mapping Invariant

® sharing resources via Rust’s in-built reference Intralingual invariants assume correctness of the
types com pller ad nd mMan ual y—l nSpeCted COde There is a 1-to-1 relationship between Virtual Pages and Physical Frames
3. Lossless interfaces to preserve language level e Correctness of higher-level invariants can be i !
context and relationships between types. traced back to correct implementation of APIF are AP/F can only be N6 2 APIF over
. ncloneabl used once to create verl num AP = num AF
e map() interface preserves relationship between lower-level invariants o a MappedPages o
virtual pages and physical frames, so they e Modular verification of lower-level invariants
cannot be reused e Increase reliability of system invariants without Churk s Lsed oncs toereate | | No2 Chunks ever
. . uncloneable " overlap
proof burden of full system verification anAnr
Intralingual Design of Memory Management Assumption: Only 3 ways to create a churk T
Four invariants enfOrced by the type SYStem DeSign Meth0d0|ogy The Chunk constructor only Splitting a chunk consumes it Dropping an AP/F converts it
creates new chunks in and converts it into chunks into the original Chunk it was
'I. Mapp|ng from Virtual pages to phyS|Ca| frames |S non-overlapping ranges with disjoint ranges. created from
bijective. (bijective mapping invariant) e — L t t
. f \ f \ / \ / \ Chunk constructor ppstconditio_n: Chunk.range = AP/F.range
2. Memory must not be accessible beyond page | Write a prose proof chunk.range wasn't i the old list
| Create prpof outline graph: for a higher-level chunk.range added to list
b O u n d S) Drthe;irpelge —>> invaEr?:r?tieinto : gl::gya?(isosr:r; prons —P> inv?riant batsed on
. invariants type system - Identify formally ype-?ys em g orig_chunk.range = > chunk[il.range
3. Memory is only unmapped once, when there are verified invariants Quarantees and VL.V . 11=] A no_overlap(chunkil, chunkj)
no outstanding references. _) /U /U)
\ —

4. A memory region must only be mutable or Proof Dlagram Key

executable if mapped as such.

Invariant to be proven

Invariant enforced by type system Invariant enforced by verification

[1] Boos, Kevin, et al. "Theseus: an experiment in operating system structure and state management." 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

