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Theseus OS and Intralingual Design Intralingual + Verification Memory Management Subsystem
Theseus introduced intralingual design to maximize Motivation Creation of MappedPages
the role of the compiler in OS design [1].
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4. A memory region must only be mutable or Proof Dlagram Key

executable if mapped as such.

Invariant to be proven

Invariant enforced by type system Invariant enforced by verification
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