1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
//! An implementation of an allocator that uses multiple heaps. The heap that will be used on each allocation is determined by a key.
//! Right now we use the apic id as the key, so that we have per-core heaps.
//!
//! The heaps are ZoneAllocators (given in the slabmalloc crate). Each ZoneAllocator maintains 11 separate "slab allocators" for sizes
//! 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 and (8KiB - bytes of metadata) bytes. The maximum allocation size is given by `ZoneAllocator::MAX_ALLOC_SIZE`.
//! The slab allocator maintains linked lists of allocable pages from which it allocates objects of the same size.
//! The allocable pages are 8 KiB (`ObjectPage8k::SIZE`), and have metadata stored in the ending bytes (`ObjectPage8k::METADATA_SIZE`).
//! The metadata includes a heap id, MappedPages object this allocable page belongs to, forward and back pointers to pages stored in a linked list and a
//! bitmap to keep track of allocations. The maximum allocation size can change if the size of the objects in the metadata change. If that happens it will be automatically
//! reflected in the constants `ZoneAllocator::MAX_ALLOC_SIZE` and `ObjectPage8k::METADATA_SIZE`
//!
//! Any memory request greater than maximum allocation size, a large allocation, is satisfied through a request for pages from the kernel.
//! All other requests are satisfied through the per-core heaps.
//!
//! The per-core heap which will be used on allocation is determined by the cpu that the task is running on.
//! On deallocation of a block, the heap id is retrieved from metadata at the end of the allocable page which contains the block.
//!
//! When a per-core heap runs out of memory, pages are first moved between the slab allocators of the per-core heap, then requested from other per-core heaps.
//! If no empty pages are available within any of the per-core heaps, then more virtual pages are allocated from the range of virtual addresses dedicated to the heap
//! [KERNEL_HEAP_START](../kernel_config/memory/constant.KERNEL_HEAP_START.html) and dynamically mapped to physical memory frames.
#![feature(allocator_api)]
#![no_std]
extern crate sync_irq;
#[macro_use] extern crate log;
extern crate memory;
extern crate page_allocator;
extern crate kernel_config;
extern crate apic;
extern crate heap;
extern crate hashbrown;
#[macro_use] extern crate cfg_if;
#[cfg(all(not(unsafe_heap), not(safe_heap)))]
extern crate slabmalloc;
#[cfg(unsafe_heap)]
extern crate slabmalloc_unsafe;
#[cfg(safe_heap)]
extern crate slabmalloc_safe;
use core::ptr::NonNull;
use alloc::alloc::{GlobalAlloc, Layout};
use alloc::boxed::Box;
use hashbrown::HashMap;
use memory::{MappedPages, VirtualAddress, get_kernel_mmi_ref, create_mapping};
use kernel_config::memory::{PAGE_SIZE, KERNEL_HEAP_START, KERNEL_HEAP_INITIAL_SIZE};
use core::ops::Deref;
use core::ptr;
use heap::HEAP_FLAGS;
use sync_irq::IrqSafeMutex;
use page_allocator::{DeferredAllocAction, allocate_pages_by_bytes_deferred};
#[cfg(all(not(unsafe_heap), not(safe_heap)))]
use slabmalloc::{ZoneAllocator, ObjectPage8k, AllocablePage, MappedPages8k};
#[cfg(unsafe_heap)]
use slabmalloc_unsafe::{ZoneAllocator, ObjectPage8k, AllocablePage};
#[cfg(safe_heap)]
use slabmalloc_safe::{ZoneAllocator, ObjectPage8k, AllocablePage, MappedPages8k};
/// The size in bytes of each "group" or "set" of MappedPages objects that is allocated for each heap's slab.
/// We curently work with 8KiB sets, such that the per-core heaps can allocate objects up to `ZoneAllocator::MAX_ALLOC_SIZE`.
const HEAP_MAPPED_PAGES_SIZE_IN_BYTES: usize = ObjectPage8k::SIZE;
/// The size in pages of each heap's page set, see `HEAP_MAPPED_PAGES_SIZE_IN_BYTES`.
const HEAP_MAPPED_PAGES_SIZE_IN_PAGES: usize = HEAP_MAPPED_PAGES_SIZE_IN_BYTES / PAGE_SIZE;
/// When an OOM error occurs, before allocating more memory from the OS, we first try to see if there are unused(empty) pages
/// within the per-core heaps that can be moved to other heaps. To prevent any heap from completely running out of memory we
/// set this threshold value. A heap must have greater than this number of empty mapped pages to return one for use by other heaps.
const EMPTY_PAGES_THRESHOLD: usize = ZoneAllocator::MAX_BASE_SIZE_CLASSES * 2;
/// The number of pages each size class in the ZoneAllocator is initialized with. It is approximately 512 KiB.
const PAGES_PER_SIZE_CLASS: usize = 128; // was 24
/// Starting size of each per-core heap.
pub const PER_CORE_HEAP_INITIAL_SIZE_PAGES: usize = ZoneAllocator::MAX_BASE_SIZE_CLASSES * PAGES_PER_SIZE_CLASS;
/// The number of heap page sets that are requested from the OS whenever the heap is grown.
/// This should be minimum `2` in order to ensure that there is at least:
/// * one empty page for the requested allocation, and
/// * one empty page for the deferred allocations to occur.
///
/// # Important Note
/// The total size of heap objects allocated during/by the deferred alloc actions must be able to fit
/// into the additional page(s) here, which is currently just one extra heap page set (currently 8KiB).
/// Currently, each `DeferredAllocAction` creates 3 chunks, so that means that the current calculation is:
/// `(3 * HEAP_GROWTH_AMOUNT * sizeof(Chunk)` bytes must fit within one 8KiB heap page set.
const HEAP_GROWTH_AMOUNT: usize = 2;
/// Creates and initializes the multiple heaps using the apic id as the key, which is mapped to a heap.
/// If we want to change the value the heap id is based on, we would substitute
/// the lapic iterator with an iterator containing the desired keys.
fn initialize_multiple_heaps() -> Result<MultipleHeaps, &'static str> {
let mut multiple_heaps = MultipleHeaps::empty();
for (apic_id, _lapic) in apic::get_lapics().iter() {
init_individual_heap(apic_id.value() as usize, &mut multiple_heaps)?;
}
Ok(multiple_heaps)
}
/// The setup routine for multiple heaps. It creates and initializes the multiple heaps,
/// then sets the multiple heaps as the default allocator.
/// Only call this function when the multiple heaps are ready to be used.
pub fn switch_to_multiple_heaps() -> Result<(), &'static str> {
let multiple_heaps = Box::new(initialize_multiple_heaps()?);
//set the multiple heaps as the default allocator
heap::set_allocator(multiple_heaps);
Ok(())
}
/// Allocates pages from the given starting address and maps them to frames.
/// Returns the new mapped pages or an error if the heap memory limit is reached.
fn create_heap_mapping(
starting_address: VirtualAddress,
size_in_bytes: usize
) -> Result<(MappedPages, DeferredAllocAction<'static>), &'static str> {
let kernel_mmi_ref = get_kernel_mmi_ref().ok_or("create_heap_mapping(): KERNEL_MMI was not yet initialized!")?;
let (pages, action) = allocate_pages_by_bytes_deferred(
page_allocator::AllocationRequest::AtVirtualAddress(starting_address),
size_in_bytes,
).map_err(|_e| "create_heap_mapping(): failed to allocate pages at the starting address")?;
if pages.start_address().value() % HEAP_MAPPED_PAGES_SIZE_IN_BYTES != 0 {
return Err("multiple_heaps: the allocated pages for the heap wasn't properly aligned");
}
let mp = kernel_mmi_ref.lock().page_table.map_allocated_pages(pages, HEAP_FLAGS)?;
// trace!("Allocated heap pages at: {:#X}", starting_address);
Ok((mp, action))
}
// Initialization function for the heap differs depending on the slabmalloc version used.
//
// For the unsafe version, the new heap mapping is merged into the heap MappedPages object in the kernel mmi
// and then a reference to the starting address is passed to the ZoneAllocator.
//
// For the default and safe versions, MappedPages8k objects are created from the new heap mapping and passed to the ZoneAllocator.
cfg_if! {
if #[cfg(unsafe_heap)] {
extern crate alloc;
extern crate spin;
use spin::Once;
/// Initializes the heap given by `key`.
/// There are 11 size classes in each heap ranging from [8,16,32,64 ..`ZoneAllocator::MAX_ALLOC_SIZE`].
/// We evenly distribute the pages allocated for each heap between the size classes.
pub fn init_individual_heap(key: usize, multiple_heaps: &mut MultipleHeaps) -> Result<(), &'static str> {
let mut heap_end = multiple_heaps.end.lock();
let mut heap_end_addr = *heap_end;
let mapped_pages_per_size_class = PER_CORE_HEAP_INITIAL_SIZE_PAGES / (ZoneAllocator::MAX_BASE_SIZE_CLASSES * HEAP_MAPPED_PAGES_SIZE_IN_PAGES);
let mut zone_allocator = ZoneAllocator::new(key);
let alloc_sizes = &ZoneAllocator::BASE_ALLOC_SIZES;
for size in alloc_sizes {
for _ in 0..mapped_pages_per_size_class {
// the alignment is equal to the size unless the size is not a multiple of 2
let mut alignment = *size;
if alignment == ZoneAllocator::MAX_BASE_ALLOC_SIZE {
alignment = 8;
}
let layout = Layout::from_size_align(*size, alignment).map_err(|_e| "Incorrect layout")?;
// create the mapped pages starting from the previous end of the heap
let (mp, _action) = create_heap_mapping(heap_end_addr, HEAP_MAPPED_PAGES_SIZE_IN_BYTES)?;
let start_addr = mp.start_address().value();
if start_addr % ObjectPage8k::SIZE != 0 {
return Err("MappedPages allocated for heap are not aligned on an 8k boundary");
}
multiple_heaps.extend_heap_mp(mp)?;
let page = unsafe{ core::mem::transmute(start_addr) };
zone_allocator.refill(layout, page)?;
// update the end address of the heap
heap_end_addr += HEAP_MAPPED_PAGES_SIZE_IN_BYTES;
// trace!("Added an object page {:#X} to slab of size {}", addr, sizes[slab]);
}
}
// store the new end of the heap after this core has been initialized
*heap_end = heap_end_addr;
// store the newly created allocator in the multiple heaps object
if let Some(_heap) = multiple_heaps.heaps.insert(key, LockedHeap(IrqSafeMutex::new(zone_allocator))) {
return Err("New heap created with a previously used id");
}
trace!("Created heap {} with max alloc size: {} bytes", key, ZoneAllocator::MAX_ALLOC_SIZE);
Ok(())
}
} else {
extern crate alloc;
/// Initializes the heap given by `key`.
/// There are 11 size classes in each heap ranging from [8,16,32,64 ..`ZoneAllocator::MAX_ALLOC_SIZE`].
/// We evenly distribute the pages allocated for each heap between the size classes.
pub fn init_individual_heap(key: usize, multiple_heaps: &mut MultipleHeaps) -> Result<(), &'static str> {
let mut heap_end = multiple_heaps.end.lock();
let mut heap_end_addr = *heap_end;
let mapped_pages_per_size_class = PER_CORE_HEAP_INITIAL_SIZE_PAGES / (ZoneAllocator::MAX_BASE_SIZE_CLASSES * HEAP_MAPPED_PAGES_SIZE_IN_PAGES);
let mut zone_allocator = ZoneAllocator::new(key);
let alloc_sizes = &ZoneAllocator::BASE_ALLOC_SIZES;
for size in alloc_sizes {
for _ in 0..mapped_pages_per_size_class {
// the alignment is equal to the size unless the size is not a multiple of 2
let mut alignment = *size;
if alignment == ZoneAllocator::MAX_BASE_ALLOC_SIZE {
alignment = 8;
}
let layout = Layout::from_size_align(*size, alignment).map_err(|_e| "Incorrect layout")?;
// create the mapped pages starting from the previous end of the heap
let (mp, _action) = create_heap_mapping(heap_end_addr, HEAP_MAPPED_PAGES_SIZE_IN_BYTES)?;
let mapping = MappedPages8k::new(mp)?;
// add page to the allocator
zone_allocator.refill(layout, mapping)?;
// update the end address of the heap
// trace!("Added an object page {:#X} to slab of size {}", heap_end_addr, size);
heap_end_addr += HEAP_MAPPED_PAGES_SIZE_IN_BYTES;
}
}
// store the new end of the heap after this core has been initialized
*heap_end = heap_end_addr;
// store the newly created allocator in the multiple heaps object
if let Some(_heap) = multiple_heaps.heaps.insert(key, LockedHeap(IrqSafeMutex::new(zone_allocator))) {
return Err("New heap created with a previously used id");
}
trace!("Created heap {} with max alloc size: {} bytes", key, ZoneAllocator::MAX_ALLOC_SIZE);
Ok(())
}
}
} // end cfg_if for initialization functions
/// Returns the key that determines which heap will be currently used.
///
/// This implementation uses the current CPU ID as the key,
/// but this can easily be replaced with another value, e.g., Task ID.
#[inline(always)]
fn get_key() -> usize {
apic::current_cpu().value() as usize
}
// The LockedHeap struct definition changes depending on the slabmalloc version used.
// The safe version does not pass any lifetime parameter to the ZoneAllocator, while the unsafe and default versions do.
cfg_if! {
if #[cfg(safe_heap)] {
#[repr(align(64))]
struct LockedHeap (IrqSafeMutex<ZoneAllocator>);
impl Deref for LockedHeap {
type Target = IrqSafeMutex<ZoneAllocator>;
fn deref(&self) -> &IrqSafeMutex<ZoneAllocator> {
&self.0
}
}
} else {
#[repr(align(64))]
struct LockedHeap (IrqSafeMutex<ZoneAllocator<'static>>);
impl Deref for LockedHeap {
type Target = IrqSafeMutex<ZoneAllocator<'static>>;
fn deref(&self) -> &IrqSafeMutex<ZoneAllocator<'static>> {
&self.0
}
}
}
} // end cfg_if for LockedHeap versions
/// An allocator that contains multiple heaps. The heap that is used on each allocation is
/// determined by a key. Currently the apic id is used as the key.
pub struct MultipleHeaps{
/// the per-core heaps
heaps: HashMap<usize,LockedHeap>,
/// Red-black tree to store large allocations
#[cfg(not(unsafe_large_allocations))]
large_allocations: IrqSafeMutex<RBTree<LargeAllocationAdapter>>,
/// We currently don't return memory back to the OS. Because of this all memory in the heap is contiguous
/// and extra memory for the heap is always allocated from the end.
/// The Mutex also serves the purpose of helping to synchronize new allocations.
end: IrqSafeMutex<VirtualAddress>,
/// The mapped pages for the unsafe heap are stored here so that they are not dropped and unmapped.
#[cfg(unsafe_heap)]
mp: Once<IrqSafeMutex<MappedPages>>
}
// The grow_heap() function for the MultipleHeaps changes depending on the slabmalloc version used.
//
// In the default version, MappedPages8k objects are passed to the heap that needs to be grown.
// In the unsafe version, the new heap mapping is merged into the heap MappedPages object in the kernel mmi
// and then a reference to the starting address is passed to the heap that needs to be grown.
// In the safe version, an Err is returned since the heap is statically sized.
cfg_if! {
if #[cfg(unsafe_heap)] {
impl MultipleHeaps {
pub fn empty() -> MultipleHeaps {
MultipleHeaps{
heaps: HashMap::new(),
#[cfg(not(unsafe_large_allocations))]
large_allocations: IrqSafeMutex::new(RBTree::new(LargeAllocationAdapter::new())),
end: IrqSafeMutex::new(VirtualAddress::new_canonical(KERNEL_HEAP_START + KERNEL_HEAP_INITIAL_SIZE)),
mp: Once::new()
}
}
/// Called when a call to allocate() returns a null pointer. The following steps are used to recover memory:
/// (1) Pages are first taken from another heap.
/// (2) If the above fails, then more pages are allocated from the OS.
///
/// An Err is returned if there is no more memory to be allocated in the heap memory area.
///
/// # Arguments
/// * `layout`: layout.size will determine which allocation size the retrieved pages will be used for.
/// * `heap_to_grow`: heap that needs to grow.
fn grow_heap(&self, layout: Layout, heap_to_grow: &LockedHeap) -> Result<(), &'static str> {
// (1) Try to retrieve a page from the another heap
for heap_ref in self.heaps.values() {
if let Some((mp, _giving_heap_id)) = heap_ref.try_lock().and_then(|mut giving_heap|
giving_heap.retrieve_empty_page(EMPTY_PAGES_THRESHOLD).map(|mp| (mp, giving_heap.heap_id))
) {
info!("Added page from another heap {} to heap {}", _giving_heap_id, heap_to_grow.lock().heap_id);
return heap_to_grow.lock().refill(layout, mp);
}
}
// (2) Allocate page from the OS
let mut heap_end = self.end.lock();
for _ in 0..HEAP_GROWTH_AMOUNT {
let (mp, _action) = create_heap_mapping(*heap_end, HEAP_MAPPED_PAGES_SIZE_IN_BYTES)?;
let start_addr = mp.start_address().value();
self.extend_heap_mp(mp)?;
let page = unsafe { core::mem::transmute(start_addr) };
info!("grow_heap:: Allocated page(s) at {:X?} to refill heap {} for layout size: {}, prior heap_end: {:#X}",
start_addr, heap_to_grow.lock().heap_id, layout.size(), *heap_end
);
*heap_end += HEAP_MAPPED_PAGES_SIZE_IN_BYTES;
heap_to_grow.lock().refill(layout, page)?;
}
Ok(())
}
/// Merge mapped pages `mp` with the heap mapped pages.
///
/// # Warning
/// The new mapped pages must start from the virtual address that the current heap mapped pages end at.
fn extend_heap_mp(&self, mp: MappedPages) -> Result<(), &'static str> {
if let Some(heap_mp) = self.mp.get() {
heap_mp.lock().merge(mp).map_err(|(e, _mp)| e)?;
} else {
self.mp.call_once(|| IrqSafeMutex::new(mp));
}
Ok(())
}
}
} else if #[cfg(safe_heap)] {
impl MultipleHeaps {
pub fn empty() -> MultipleHeaps {
MultipleHeaps{
heaps: HashMap::new(),
#[cfg(not(unsafe_large_allocations))]
large_allocations: IrqSafeMutex::new(RBTree::new(LargeAllocationAdapter::new())),
end: IrqSafeMutex::new(VirtualAddress::new_canonical(KERNEL_HEAP_START + KERNEL_HEAP_INITIAL_SIZE))
}
}
/// Called when a call to allocate() returns a null pointer. The following steps are used to recover memory:
/// (1) Pages are first taken from another heap.
/// (2) If the above fails, then more pages are allocated from the OS.
///
/// An Err is returned if there is no more memory to be allocated in the heap memory area or if the heap page limit is reached.
///
/// # Arguments
/// * `layout`: layout.size will determine which allocation size the retrieved pages will be used for.
/// * `heap_to_grow`: heap that needs to grow.
fn grow_heap(&self, layout: Layout, heap_to_grow: &LockedHeap) -> Result<(), &'static str> {
// (1) Try to retrieve a page from the another heap
for heap_ref in self.heaps.values() {
if let Some((mp, _giving_heap_id)) = heap_ref.try_lock().and_then(|mut giving_heap|
giving_heap.retrieve_empty_page(EMPTY_PAGES_THRESHOLD).map(|mp| (mp, giving_heap.heap_id))
) {
info!("Added page from another heap {} to heap {}", _giving_heap_id, heap_to_grow.lock().heap_id);
return heap_to_grow.lock().refill(layout, mp);
}
}
// (2) Allocate page from the OS
let mut heap_end = self.end.lock();
for _ in 0..HEAP_GROWTH_AMOUNT {
let (mp, _action) = create_heap_mapping(*heap_end, HEAP_MAPPED_PAGES_SIZE_IN_BYTES)?;
let mp = MappedPages8k::new(mp)?;
info!("grow_heap:: Allocated page(s) at {:X?} to refill heap {} for layout size: {}, prior heap_end: {:#X}",
mp.start_address(), heap_to_grow.lock().heap_id, layout.size(), *heap_end
);
*heap_end += HEAP_MAPPED_PAGES_SIZE_IN_BYTES;
heap_to_grow.lock().refill(layout, mp)?;
}
Ok(())
}
}
} else {
impl MultipleHeaps {
pub fn empty() -> MultipleHeaps {
MultipleHeaps{
heaps: HashMap::new(),
#[cfg(not(unsafe_large_allocations))]
large_allocations: IrqSafeMutex::new(RBTree::new(LargeAllocationAdapter::new())),
end: IrqSafeMutex::new(VirtualAddress::new_canonical(KERNEL_HEAP_START + KERNEL_HEAP_INITIAL_SIZE))
}
}
/// Called when a call to allocate() returns a null pointer. The following steps are used to recover memory:
/// (1) Pages are first taken from another heap.
/// (2) If the above fails, then more pages are allocated from the OS.
///
/// An Err is returned if there is no more memory to be allocated in the heap memory area.
///
/// # Arguments
/// * `layout`: layout.size will determine which allocation size the retrieved pages will be used for.
/// * `heap_to_grow`: heap that needs to grow.
fn grow_heap(&self, layout: Layout, heap_to_grow: &LockedHeap) -> Result<(), &'static str> {
// (1) Try to retrieve a page from the another heap
for heap_ref in self.heaps.values() {
if let Some((mp, _giving_heap_id)) = heap_ref.try_lock().and_then(|mut giving_heap|
giving_heap.retrieve_empty_page(EMPTY_PAGES_THRESHOLD).map(|mp| (mp, giving_heap.heap_id))
) {
info!("Added page from another heap {} to heap {}", _giving_heap_id, heap_to_grow.lock().heap_id);
return heap_to_grow.lock().refill(layout, mp);
}
}
// (2) Allocate page from the OS
let mut heap_end = self.end.lock();
for _ in 0..HEAP_GROWTH_AMOUNT {
let (mp, _action) = create_heap_mapping(*heap_end, HEAP_MAPPED_PAGES_SIZE_IN_BYTES)?;
let mp = MappedPages8k::new(mp)?;
info!("grow_heap:: Allocated page(s) at {:X?} to refill heap {} for layout size: {}, prior heap_end: {:#X}",
mp.start_address(), heap_to_grow.lock().heap_id, layout.size(), *heap_end
);
*heap_end += HEAP_MAPPED_PAGES_SIZE_IN_BYTES;
heap_to_grow.lock().refill(layout, mp)?;
}
Ok(())
}
}
}
} // end cfg_if for MultipleHeaps impl
unsafe impl GlobalAlloc for MultipleHeaps {
/// Allocates the given `layout` from the heap of the core the task is currently running on.
/// If the per-core heap is not initialized, then an error is returned.
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
// allocate a large object by directly obtaining mapped pages from the OS
if layout.size() > ZoneAllocator::MAX_ALLOC_SIZE {
#[cfg(not(unsafe_large_allocations))]
return allocate_large_object(
layout,
&mut self.large_allocations.lock()
);
#[cfg(unsafe_large_allocations)]
return allocate_large_object(layout);
}
// For regular-sized allocations, we first try to allocated from "our" heap,
// which is currently the per-core heap for the current CPU core.
let our_heap = self.heaps.get(&get_key()).expect("Multiple Heaps: heap is not initialized!");
if let Ok(ptr) = { our_heap.lock().allocate(layout) } {
return ptr.as_ptr();
};
// If it fails the first time, we try to grow the heap and then try again.
// We must not hold any heap locks while doing so, since growing the heap may result in
// additional heap allocation by virtue of allocating more pages.
self.grow_heap(layout, our_heap)
.and_then(|_| our_heap.lock().allocate(layout)) // try again
.map(|nn| nn.as_ptr()) // convert to raw ptr
.unwrap_or(ptr::null_mut())
}
/// Deallocates the memory at the address given by `ptr`.
/// Memory is returned to the per-core heap it was allocated from.
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
// deallocate a large object by directly returning mapped pages to the OS
if layout.size() > ZoneAllocator::MAX_ALLOC_SIZE {
#[cfg(not(unsafe_large_allocations))]
return deallocate_large_object(
ptr,
layout,
&mut self.large_allocations.lock()
);
#[cfg(unsafe_large_allocations)]
return deallocate_large_object(
ptr,
layout
);
}
// find the starting address of the object page this block belongs to
let page_addr = (ptr as usize) & !(ObjectPage8k::SIZE - 1);
// find the heap id
let id = *((page_addr as *mut u8).add(ObjectPage8k::HEAP_ID_OFFSET) as *mut usize);
let mut heap = self.heaps.get(&id).expect("Multiple Heaps: Heap not initialized").lock();
heap.deallocate(NonNull::new_unchecked(ptr), layout).expect("Couldn't deallocate");
}
}
cfg_if! {
if #[cfg(unsafe_large_allocations)] {
/// Any memory request greater than MAX_ALLOC_SIZE is satisfied through a request to the OS.
/// The pointer to the beginning of the newly allocated pages is returned.
/// The MappedPages object returned by that request is written to the end of the memory allocated.
///
/// # Warning
/// This function should only be used by an allocator in conjunction with [`deallocate_large_object()`](fn.deallocate_large_object.html)
fn allocate_large_object(layout: Layout) -> *mut u8 {
// the mapped pages must have additional memory on the end where we can store the mapped pages object
let allocation_size = layout.size() + core::mem::size_of::<MappedPages>();
if let Ok(mapping) = create_mapping(allocation_size, HEAP_FLAGS) {
let ptr = mapping.start_address().value() as *mut u8;
// This is safe since we ensure that the memory allocated includes space for the MappedPages object,
// and since the corresponding deallocate function makes sure to retrieve the MappedPages object and drop it.
unsafe{ (ptr.offset(layout.size() as isize) as *mut MappedPages).write(mapping); }
// trace!("Allocated a large object of {} bytes at address: {:#X}", layout.size(), ptr as usize);
ptr
} else {
error!("Could not create mapping for a large object in the heap");
ptr::null_mut()
}
}
/// Any memory request greater than MAX_ALLOC_SIZE was created by requesting a MappedPages object from the OS,
/// and now the MappedPages object will be retrieved and dropped to deallocate the memory referenced by `ptr`.
///
/// # Warning
/// This function should only be used by an allocator in conjunction with [`allocate_large_object()`](fn.allocate_large_object.html)
unsafe fn deallocate_large_object(ptr: *mut u8, layout: Layout) {
// retrieve the mapped pages and drop them
// This is safe since we ensure that the MappedPages object is read from the offset where it was written
// by the corresponding allocate function, and the allocate function allocated extra memory for this object in addition to the layout size.
let _mp = core::ptr::read(ptr.offset(layout.size() as isize) as *const MappedPages);
// trace!("Deallocated a large object of {} bytes at address: {:#X}", layout.size(), ptr as usize);
}
} else {
extern crate intrusive_collections;
use intrusive_collections::{intrusive_adapter,RBTree, RBTreeLink, KeyAdapter, PointerOps};
/// The links for the RBTree used to store large allocations
struct LargeAllocation {
link: RBTreeLink,
mp: MappedPages
}
// Our design depends on the fact that on the large allocation path, only objects smaller than the max allocation size will be allocated from the heap.
// Otherwise we will have a recursive loop of large allocations.
const _: () = assert!(core::mem::size_of::<LargeAllocation>() < ZoneAllocator::MAX_ALLOC_SIZE);
intrusive_adapter!(LargeAllocationAdapter = Box<LargeAllocation>: LargeAllocation { link: RBTreeLink });
/// Defines the key which will be used to search for elements in the RBTree.
/// Here it is the starting address of the allocation.
impl<'a> KeyAdapter<'a> for LargeAllocationAdapter {
type Key = usize;
fn get_key(&self, value: &'a <Self::PointerOps as PointerOps>::Value) -> usize {
value.mp.start_address().value()
}
}
/// Any memory request greater than `ZoneAllocator::MAX_ALLOC_SIZE` is satisfied through a request to the OS.
/// The pointer to the beginning of the newly allocated pages is returned.
/// The MappedPages object returned by that request is stored in an RB-tree
///
/// # Warning
/// This function should only be used by an allocator in conjunction with [`deallocate_large_object()`](fn.deallocate_large_object.html)
fn allocate_large_object(layout: Layout, map: &mut RBTree<LargeAllocationAdapter>) -> *mut u8 {
if let Ok(mp) = create_mapping(layout.size(), HEAP_FLAGS) {
let ptr = mp.start_address().value();
let link = Box::new(LargeAllocation {
link: RBTreeLink::new(),
mp
});
map.insert(link);
// trace!("Allocated a large object of {} bytes at address: {:#X}", layout.size(), ptr as usize);
ptr as *mut u8
} else {
error!("Could not create mapping for a large object in the heap");
ptr::null_mut()
}
}
/// Any memory request greater than `ZoneAllocator::MAX_ALLOC_SIZE` was created by requesting a MappedPages object from the OS,
/// and now the MappedPages object will be retrieved from the RB-tree and dropped to deallocate the memory referenced by `ptr`.
///
/// # Warning
/// This function should only be used by an allocator in conjunction with [`allocate_large_object()`](fn.allocate_large_object.html)
fn deallocate_large_object(ptr: *mut u8, _layout: Layout, map: &mut RBTree<LargeAllocationAdapter>) {
let _mp = map.find_mut(&(ptr as usize)).remove()
.expect("Invalid ptr was passed to deallocate_large_object. There is no such mapping stored");
// trace!("Deallocated a large object of {} bytes at address: {:#X} {:#X}", _layout.size(), ptr as usize, _mp.mp.start_address());
}
}
} // end cfg_if for large allocation variations