1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
//! Provides an allocator for physical memory frames.
//! The minimum unit of allocation is a single frame.
//!
//! This is currently a modified and more complex version of the `page_allocator` crate.
//! TODO: extract the common code and create a generic allocator that can be specialized to allocate pages or frames.
//!
//! This also supports early allocation of frames before heap allocation is available,
//! and does so behind the scenes using the same single interface.
//! Early pre-heap allocations are limited to tracking a small number of available chunks (currently 32).
//!
//! Once heap allocation is available, it uses a dynamically-allocated list of frame chunks to track allocations.
//!
//! The core allocation function is [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html),
//! but there are several convenience functions that offer simpler interfaces for general usage.
//!
//! # Notes and Missing Features
//! This allocator currently does **not** merge freed chunks (de-fragmentation).
//! We don't need to do so until we actually run out of address space or until
//! a requested address is in a chunk that needs to be merged.
#![allow(clippy::blocks_in_if_conditions)]
#![no_std]
extern crate alloc;
#[macro_use] extern crate log;
extern crate kernel_config;
extern crate memory_structs;
extern crate spin;
#[macro_use] extern crate static_assertions;
extern crate intrusive_collections;
#[cfg(test)]
mod test;
mod static_array_rb_tree;
// mod static_array_linked_list;
use core::{borrow::Borrow, cmp::{Ordering, min, max}, fmt, ops::{Deref, DerefMut}, marker::PhantomData};
use kernel_config::memory::*;
use memory_structs::{PhysicalAddress, Frame, FrameRange};
use spin::Mutex;
use intrusive_collections::Bound;
use static_array_rb_tree::*;
const FRAME_SIZE: usize = PAGE_SIZE;
const MIN_FRAME: Frame = Frame::containing_address(PhysicalAddress::zero());
const MAX_FRAME: Frame = Frame::containing_address(PhysicalAddress::new_canonical(usize::MAX));
// Note: we keep separate lists for "free, general-purpose" areas and "reserved" areas, as it's much faster.
/// The single, system-wide list of free physical memory frames available for general usage.
static FREE_GENERAL_FRAMES_LIST: Mutex<StaticArrayRBTree<Chunk>> = Mutex::new(StaticArrayRBTree::empty());
/// The single, system-wide list of free physical memory frames reserved for specific usage.
static FREE_RESERVED_FRAMES_LIST: Mutex<StaticArrayRBTree<Chunk>> = Mutex::new(StaticArrayRBTree::empty());
/// The fixed list of all known regions that are available for general use.
/// This does not indicate whether these regions are currently allocated,
/// rather just where they exist and which regions are known to this allocator.
static GENERAL_REGIONS: Mutex<StaticArrayRBTree<Chunk>> = Mutex::new(StaticArrayRBTree::empty());
/// The fixed list of all known regions that are reserved for specific purposes.
/// This does not indicate whether these regions are currently allocated,
/// rather just where they exist and which regions are known to this allocator.
static RESERVED_REGIONS: Mutex<StaticArrayRBTree<Chunk>> = Mutex::new(StaticArrayRBTree::empty());
/// Initialize the frame allocator with the given list of available and reserved physical memory regions.
///
/// Any regions in either of the lists may overlap, this is checked for and handled properly.
/// Reserved regions take priority -- if a reserved region partially or fully overlaps any part of a free region,
/// that portion will be considered reserved, not free.
///
/// The iterator (`R`) over reserved physical memory regions must be cloneable,
/// as this runs before heap allocation is available, and we may need to iterate over it multiple times.
///
/// ## Return
/// Upon success, this function returns a callback function that allows the caller
/// (the memory subsystem init function) to convert a range of unmapped frames
/// back into an [`AllocatedFrames`] object.
pub fn init<F, R, P>(
free_physical_memory_areas: F,
reserved_physical_memory_areas: R,
) -> Result<fn(FrameRange) -> AllocatedFrames, &'static str>
where P: Borrow<PhysicalMemoryRegion>,
F: IntoIterator<Item = P>,
R: IntoIterator<Item = P> + Clone,
{
if FREE_GENERAL_FRAMES_LIST .lock().len() != 0 ||
FREE_RESERVED_FRAMES_LIST.lock().len() != 0 ||
GENERAL_REGIONS .lock().len() != 0 ||
RESERVED_REGIONS .lock().len() != 0
{
return Err("BUG: Frame allocator was already initialized, cannot be initialized twice.");
}
let mut free_list: [Option<Chunk>; 32] = Default::default();
let mut free_list_idx = 0;
// Populate the list of free regions for general-purpose usage.
for area in free_physical_memory_areas.into_iter() {
let area = area.borrow();
// debug!("Frame Allocator: looking to add free physical memory area: {:?}", area);
check_and_add_free_region(
area,
&mut free_list,
&mut free_list_idx,
reserved_physical_memory_areas.clone(),
);
}
let mut reserved_list: [Option<Chunk>; 32] = Default::default();
for (i, area) in reserved_physical_memory_areas.into_iter().enumerate() {
reserved_list[i] = Some(Chunk {
typ: MemoryRegionType::Reserved,
frames: area.borrow().frames.clone(),
});
}
let mut changed = true;
while changed {
let mut temp_reserved_list: [Option<Chunk>; 32] = Default::default();
changed = false;
let mut temp_reserved_list_idx = 0;
for i in 0..temp_reserved_list.len() {
if let Some(mut current) = reserved_list[i].clone() {
for maybe_other in &mut reserved_list[i + 1..] {
if let Some(other) = maybe_other {
if current.overlap(other).is_some() {
current.frames = FrameRange::new(
min(*current.start(), *other.start()),
max(*current.end(), *other.end()),
);
changed = true;
*maybe_other = None;
}
}
}
temp_reserved_list[temp_reserved_list_idx] = Some(current);
temp_reserved_list_idx += 1;
}
}
reserved_list = temp_reserved_list;
}
// Finally, one last sanity check -- ensure no two regions overlap.
let all_areas = free_list[..free_list_idx].iter().flatten()
.chain(reserved_list.iter().flatten());
for (i, elem) in all_areas.clone().enumerate() {
let next_idx = i + 1;
for other in all_areas.clone().skip(next_idx) {
if let Some(overlap) = elem.overlap(other) {
panic!("BUG: frame allocator free list had overlapping ranges: \n \t {:?} and {:?} overlap at {:?}",
elem, other, overlap,
);
}
}
}
*FREE_GENERAL_FRAMES_LIST.lock() = StaticArrayRBTree::new(free_list.clone());
*FREE_RESERVED_FRAMES_LIST.lock() = StaticArrayRBTree::new(reserved_list.clone());
*GENERAL_REGIONS.lock() = StaticArrayRBTree::new(free_list);
*RESERVED_REGIONS.lock() = StaticArrayRBTree::new(reserved_list);
Ok(into_allocated_frames)
}
/// The main logic of the initialization routine
/// used to populate the list of free frame chunks.
///
/// This function recursively iterates over the given `area` of frames
/// and adds any ranges of frames within that `area` that are not covered by
/// the given list of `reserved_physical_memory_areas`.
fn check_and_add_free_region<P, R>(
area: &FrameRange,
free_list: &mut [Option<Chunk>; 32],
free_list_idx: &mut usize,
reserved_physical_memory_areas: R,
)
where P: Borrow<PhysicalMemoryRegion>,
R: IntoIterator<Item = P> + Clone,
{
// This will be set to the frame that is the start of the current free region.
let mut current_start = *area.start();
// This will be set to the frame that is the end of the current free region.
let mut current_end = *area.end();
// trace!("looking at sub-area {:X?} to {:X?}", current_start, current_end);
for reserved in reserved_physical_memory_areas.clone().into_iter() {
let reserved = &reserved.borrow().frames;
// trace!("\t Comparing with reserved area {:X?}", reserved);
if reserved.contains(¤t_start) {
// info!("\t\t moving current_start from {:X?} to {:X?}", current_start, *reserved.end() + 1);
current_start = *reserved.end() + 1;
}
if ¤t_start <= reserved.start() && reserved.start() <= ¤t_end {
// Advance up to the frame right before this reserved region started.
// info!("\t\t moving current_end from {:X?} to {:X?}", current_end, min(current_end, *reserved.start() - 1));
current_end = min(current_end, *reserved.start() - 1);
if area.end() <= reserved.end() {
// Optimization here: the rest of the current area is reserved,
// so there's no need to keep iterating over the reserved areas.
// info!("\t !!! skipping the rest of the area");
break;
} else {
let after = FrameRange::new(*reserved.end() + 1, *area.end());
// warn!("moving on to after {:X?}", after);
// Here: the current area extends past this current reserved area,
// so there might be another free area that starts after this reserved area.
check_and_add_free_region(
&after,
free_list,
free_list_idx,
reserved_physical_memory_areas.clone(),
);
}
}
}
let new_area = FrameRange::new(current_start, current_end);
if new_area.size_in_frames() > 0 {
free_list[*free_list_idx] = Some(Chunk {
typ: MemoryRegionType::Free,
frames: new_area,
});
*free_list_idx += 1;
}
}
/// A region of physical memory.
#[derive(Clone, Debug)]
pub struct PhysicalMemoryRegion {
pub frames: FrameRange,
pub typ: MemoryRegionType,
}
impl PhysicalMemoryRegion {
pub fn new(frames: FrameRange, typ: MemoryRegionType) -> PhysicalMemoryRegion {
PhysicalMemoryRegion { frames, typ }
}
}
impl Deref for PhysicalMemoryRegion {
type Target = FrameRange;
fn deref(&self) -> &FrameRange {
&self.frames
}
}
/// Types of physical memory. See each variant's documentation.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum MemoryRegionType {
/// Memory that is available for any general purpose.
Free,
/// Memory that is reserved for special use and is only ever allocated from if specifically requested.
/// This includes custom memory regions added by third parties, e.g.,
/// device memory discovered and added by device drivers later during runtime.
Reserved,
/// Memory of an unknown type.
/// This is a default value that acts as a sanity check, because it is invalid
/// to do any real work (e.g., allocation, access) with an unknown memory region.
Unknown,
}
/// A range of contiguous frames.
///
/// # Ordering and Equality
///
/// `Chunk` implements the `Ord` trait, and its total ordering is ONLY based on
/// its **starting** `Frame`. This is useful so we can store `Chunk`s in a sorted collection.
///
/// Similarly, `Chunk` implements equality traits, `Eq` and `PartialEq`,
/// both of which are also based ONLY on the **starting** `Frame` of the `Chunk`.
/// Thus, comparing two `Chunk`s with the `==` or `!=` operators may not work as expected.
/// since it ignores their actual range of frames.
#[derive(Debug, Clone, Eq)]
struct Chunk {
/// The type of this memory chunk, e.g., whether it's in a free or reserved region.
typ: MemoryRegionType,
/// The Frames covered by this chunk, an inclusive range.
frames: FrameRange,
}
impl Chunk {
fn as_allocated_frames(&self) -> AllocatedFrames {
AllocatedFrames {
frames: self.frames.clone(),
}
}
/// Returns a new `Chunk` with an empty range of frames.
const fn empty() -> Chunk {
Chunk {
typ: MemoryRegionType::Unknown,
frames: FrameRange::empty(),
}
}
}
impl Deref for Chunk {
type Target = FrameRange;
fn deref(&self) -> &FrameRange {
&self.frames
}
}
impl Ord for Chunk {
fn cmp(&self, other: &Self) -> Ordering {
self.frames.start().cmp(other.frames.start())
}
}
impl PartialOrd for Chunk {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for Chunk {
fn eq(&self, other: &Self) -> bool {
self.frames.start() == other.frames.start()
}
}
impl Borrow<Frame> for &'_ Chunk {
fn borrow(&self) -> &Frame {
self.frames.start()
}
}
/// Represents a range of allocated physical memory [`Frame`]s; derefs to [`FrameRange`].
///
/// These frames are not immediately accessible because they're not yet mapped
/// by any virtual memory pages.
/// You must do that separately in order to create a `MappedPages` type,
/// which can then be used to access the contents of these frames.
///
/// This object represents ownership of the range of allocated physical frames;
/// if this object falls out of scope, its allocated frames will be auto-deallocated upon drop.
pub struct AllocatedFrames {
frames: FrameRange,
}
// AllocatedFrames must not be Cloneable, and it must not expose its inner frames as mutable.
assert_not_impl_any!(AllocatedFrames: DerefMut, Clone);
impl Deref for AllocatedFrames {
type Target = FrameRange;
fn deref(&self) -> &FrameRange {
&self.frames
}
}
impl fmt::Debug for AllocatedFrames {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "AllocatedFrames({:?})", self.frames)
}
}
impl AllocatedFrames {
/// Returns an empty AllocatedFrames object that performs no frame allocation.
/// Can be used as a placeholder, but will not permit any real usage.
pub const fn empty() -> AllocatedFrames {
AllocatedFrames {
frames: FrameRange::empty()
}
}
/// Merges the given `AllocatedFrames` object `other` into this `AllocatedFrames` object (`self`).
/// This is just for convenience and usability purposes, it performs no allocation or remapping.
///
/// The given `other` must be physically contiguous with `self`, i.e., come immediately before or after `self`.
/// That is, either `self.start == other.end + 1` or `self.end + 1 == other.start` must be true.
///
/// If either of those conditions are met, `self` is modified and `Ok(())` is returned,
/// otherwise `Err(other)` is returned.
pub fn merge(&mut self, other: AllocatedFrames) -> Result<(), AllocatedFrames> {
if *self.start() == *other.end() + 1 {
// `other` comes contiguously before `self`
self.frames = FrameRange::new(*other.start(), *self.end());
}
else if *self.end() + 1 == *other.start() {
// `self` comes contiguously before `other`
self.frames = FrameRange::new(*self.start(), *other.end());
}
else {
// non-contiguous
return Err(other);
}
// ensure the now-merged AllocatedFrames doesn't run its drop handler and free its frames.
core::mem::forget(other);
Ok(())
}
/// Splits this `AllocatedFrames` into two separate `AllocatedFrames` objects:
/// * `[beginning : at_frame - 1]`
/// * `[at_frame : end]`
///
/// This function follows the behavior of [`core::slice::split_at()`],
/// thus, either one of the returned `AllocatedFrames` objects may be empty.
/// * If `at_frame == self.start`, the first returned `AllocatedFrames` object will be empty.
/// * If `at_frame == self.end + 1`, the second returned `AllocatedFrames` object will be empty.
///
/// Returns an `Err` containing this `AllocatedFrames` if `at_frame` is otherwise out of bounds.
///
/// [`core::slice::split_at()`]: https://doc.rust-lang.org/core/primitive.slice.html#method.split_at
pub fn split(self, at_frame: Frame) -> Result<(AllocatedFrames, AllocatedFrames), AllocatedFrames> {
let end_of_first = at_frame - 1;
let (first, second) = if at_frame == *self.start() && at_frame <= *self.end() {
let first = FrameRange::empty();
let second = FrameRange::new(at_frame, *self.end());
(first, second)
}
else if at_frame == (*self.end() + 1) && end_of_first >= *self.start() {
let first = FrameRange::new(*self.start(), *self.end());
let second = FrameRange::empty();
(first, second)
}
else if at_frame > *self.start() && end_of_first <= *self.end() {
let first = FrameRange::new(*self.start(), end_of_first);
let second = FrameRange::new(at_frame, *self.end());
(first, second)
}
else {
return Err(self);
};
// ensure the original AllocatedFrames doesn't run its drop handler and free its frames.
core::mem::forget(self);
Ok((
AllocatedFrames { frames: first },
AllocatedFrames { frames: second },
))
}
/// Returns an `AllocatedFrame` if this `AllocatedFrames` object contains only one frame.
///
/// ## Panic
/// Panics if this `AllocatedFrame` contains multiple frames or zero frames.
pub fn as_allocated_frame(&self) -> AllocatedFrame {
assert!(self.size_in_frames() == 1);
AllocatedFrame {
frame: *self.start(),
_phantom: PhantomData,
}
}
}
/// This function is a callback used to convert `UnmappedFrames` into `AllocatedFrames`.
/// `UnmappedFrames` represents frames that have been unmapped from a page that had
/// exclusively mapped them, indicating that no others pages have been mapped
/// to those same frames, and thus, they can be safely deallocated.
///
/// This exists to break the cyclic dependency cycle between this crate and
/// the `page_table_entry` crate, since `page_table_entry` must depend on types
/// from this crate in order to enforce safety when modifying page table entries.
fn into_allocated_frames(frames: FrameRange) -> AllocatedFrames {
AllocatedFrames { frames }
}
impl Drop for AllocatedFrames {
fn drop(&mut self) {
if self.size_in_frames() == 0 { return; }
let (list, typ) = if frame_is_in_list(&RESERVED_REGIONS.lock(), self.start()) {
(&FREE_RESERVED_FRAMES_LIST, MemoryRegionType::Reserved)
} else {
(&FREE_GENERAL_FRAMES_LIST, MemoryRegionType::Free)
};
// trace!("frame_allocator: deallocating {:?}, typ {:?}", self, typ);
// Simply add the newly-deallocated chunk to the free frames list.
let mut locked_list = list.lock();
let res = locked_list.insert(Chunk {
typ,
frames: self.frames.clone(),
});
match res {
Ok(_inserted_free_chunk) => (),
Err(c) => error!("BUG: couldn't insert deallocated chunk {:?} into free frame list", c),
}
// Here, we could optionally use above `_inserted_free_chunk` to merge the adjacent (contiguous) chunks
// before or after the newly-inserted free chunk.
// However, there's no *need* to do so until we actually run out of address space or until
// a requested address is in a chunk that needs to be merged.
// Thus, for performance, we save that for those future situations.
}
}
impl<'f> IntoIterator for &'f AllocatedFrames {
type IntoIter = AllocatedFramesIter<'f>;
type Item = AllocatedFrame<'f>;
fn into_iter(self) -> Self::IntoIter {
AllocatedFramesIter {
_owner: self,
range: self.frames.clone(),
}
}
}
/// An iterator over each [`AllocatedFrame`] in a range of [`AllocatedFrames`].
///
/// We must implement our own iterator type here in order to tie the lifetime `'f`
/// of a returned `AllocatedFrame<'f>` type to the lifetime of its containing `AllocatedFrames`.
/// This is because the underlying type of `AllocatedFrames` is a [`FrameRange`],
/// which itself is a [`core::ops::RangeInclusive`] of [`Frame`]s, and unfortunately the
/// `RangeInclusive` type doesn't implement an immutable iterator.
///
/// Iterating through a `RangeInclusive` actually modifies its own internal range,
/// so we must avoid doing that because it would break the semantics of a `FrameRange`.
/// In fact, this is why [`FrameRange`] only implements `IntoIterator` but
/// does not implement [`Iterator`] itself.
pub struct AllocatedFramesIter<'f> {
_owner: &'f AllocatedFrames,
range: FrameRange,
}
impl<'f> Iterator for AllocatedFramesIter<'f> {
type Item = AllocatedFrame<'f>;
fn next(&mut self) -> Option<Self::Item> {
self.range.next().map(|frame|
AllocatedFrame {
frame, _phantom: PhantomData,
}
)
}
}
/// A reference to a single frame within a range of `AllocatedFrames`.
///
/// The lifetime of this type is tied to the lifetime of its owning `AllocatedFrames`.
#[derive(Debug)]
pub struct AllocatedFrame<'f> {
frame: Frame,
_phantom: PhantomData<&'f Frame>,
}
impl<'f> Deref for AllocatedFrame<'f> {
type Target = Frame;
fn deref(&self) -> &Self::Target {
&self.frame
}
}
assert_not_impl_any!(AllocatedFrame: DerefMut, Clone);
/// A series of pending actions related to frame allocator bookkeeping,
/// which may result in heap allocation.
///
/// The actions are triggered upon dropping this struct.
/// This struct can be returned from the `allocate_frames()` family of functions
/// in order to allow the caller to precisely control when those actions
/// that may result in heap allocation should occur.
/// Such actions include adding chunks to lists of free frames or frames in use.
///
/// The vast majority of use cases don't care about such precise control,
/// so you can simply drop this struct at any time or ignore it
/// with a `let _ = ...` binding to instantly drop it.
pub struct DeferredAllocAction<'list> {
/// A reference to the list into which we will insert the free general-purpose `Chunk`s.
free_list: &'list Mutex<StaticArrayRBTree<Chunk>>,
/// A reference to the list into which we will insert the free "reserved" `Chunk`s.
reserved_list: &'list Mutex<StaticArrayRBTree<Chunk>>,
/// A free chunk that needs to be added back to the free list.
free1: Chunk,
/// Another free chunk that needs to be added back to the free list.
free2: Chunk,
}
impl<'list> DeferredAllocAction<'list> {
fn new<F1, F2>(free1: F1, free2: F2) -> DeferredAllocAction<'list>
where F1: Into<Option<Chunk>>,
F2: Into<Option<Chunk>>,
{
let free1 = free1.into().unwrap_or_else(Chunk::empty);
let free2 = free2.into().unwrap_or_else(Chunk::empty);
DeferredAllocAction {
free_list: &FREE_GENERAL_FRAMES_LIST,
reserved_list: &FREE_RESERVED_FRAMES_LIST,
free1,
free2
}
}
}
impl<'list> Drop for DeferredAllocAction<'list> {
fn drop(&mut self) {
// Insert all of the chunks, both allocated and free ones, into the list.
if self.free1.size_in_frames() > 0 {
match self.free1.typ {
MemoryRegionType::Free => { self.free_list.lock().insert(self.free1.clone()).unwrap(); }
MemoryRegionType::Reserved => { self.reserved_list.lock().insert(self.free1.clone()).unwrap(); }
_ => error!("BUG likely: DeferredAllocAction encountered free1 chunk {:?} of a type Unknown", self.free1),
}
}
if self.free2.size_in_frames() > 0 {
match self.free2.typ {
MemoryRegionType::Free => { self.free_list.lock().insert(self.free2.clone()).unwrap(); }
MemoryRegionType::Reserved => { self.reserved_list.lock().insert(self.free2.clone()).unwrap(); }
_ => error!("BUG likely: DeferredAllocAction encountered free2 chunk {:?} of a type Unknown", self.free2),
};
}
}
}
/// Possible allocation errors.
#[derive(Debug)]
enum AllocationError {
/// The requested address was not free: it was already allocated, or is outside the range of this allocator.
AddressNotFree(Frame, usize),
/// The address space was full, or there was not a large-enough chunk
/// or enough remaining chunks that could satisfy the requested allocation size.
OutOfAddressSpace(usize),
}
impl From<AllocationError> for &'static str {
fn from(alloc_err: AllocationError) -> &'static str {
match alloc_err {
AllocationError::AddressNotFree(..) => "address was in use or outside of this frame allocator's range",
AllocationError::OutOfAddressSpace(..) => "out of physical address space",
}
}
}
/// Searches the given `list` for the chunk that contains the range of frames from
/// `requested_frame` to `requested_frame + num_frames`.
fn find_specific_chunk(
list: &mut StaticArrayRBTree<Chunk>,
requested_frame: Frame,
num_frames: usize
) -> Result<(AllocatedFrames, DeferredAllocAction<'static>), AllocationError> {
// The end frame is an inclusive bound, hence the -1. Parentheses are needed to avoid overflow.
let requested_end_frame = requested_frame + (num_frames - 1);
match &mut list.0 {
Inner::Array(ref mut arr) => {
for elem in arr.iter_mut() {
if let Some(chunk) = elem {
if requested_frame >= *chunk.start() && requested_end_frame <= *chunk.end() {
// Here: `chunk` was big enough and did contain the requested address.
return allocate_from_chosen_chunk(requested_frame, num_frames, &chunk.clone(), ValueRefMut::Array(elem));
}
}
}
}
Inner::RBTree(ref mut tree) => {
let mut cursor_mut = tree.upper_bound_mut(Bound::Included(&requested_frame));
if let Some(chunk) = cursor_mut.get().map(|w| w.deref().clone()) {
if chunk.contains(&requested_frame) {
if requested_end_frame <= *chunk.end() {
return allocate_from_chosen_chunk(requested_frame, num_frames, &chunk, ValueRefMut::RBTree(cursor_mut));
} else {
// We found the chunk containing the requested address, but it was too small to cover all of the requested frames.
// Let's try to merge the next-highest contiguous chunk to see if those two chunks together
// cover enough frames to fulfill the allocation request.
//
// trace!("Frame allocator: found chunk containing requested address, but it was too small. \
// Attempting to merge multiple chunks during an allocation. \
// Requested address: {:?}, num_frames: {}, chunk: {:?}",
// requested_frame, num_frames, chunk,
// );
let next_contiguous_chunk: Option<Chunk> = {
let next_cursor = cursor_mut.peek_next();
if let Some(next_chunk) = next_cursor.get().map(|w| w.deref()) {
if *chunk.end() + 1 == *next_chunk.start() {
// Here: next chunk was contiguous with the original chunk.
if requested_end_frame <= *next_chunk.end() {
// trace!("Frame allocator: found suitably-large contiguous next {:?} after initial too-small {:?}", next_chunk, chunk);
Some(next_chunk.clone())
} else {
todo!("Frame allocator: found chunk containing requested address, but it was too small. \
Theseus does not yet support merging more than two chunks during an allocation request. \
Requested address: {:?}, num_frames: {}, chunk: {:?}, next_chunk {:?}",
requested_frame, num_frames, chunk, next_chunk
);
// None
}
} else {
trace!("Frame allocator: next {:?} was not contiguously above initial too-small {:?}", next_chunk, chunk);
None
}
} else {
trace!("Frame allocator: couldn't get next chunk above initial too-small {:?}", chunk);
None
}
};
if let Some(mut next_chunk) = next_contiguous_chunk {
// We found a suitable chunk that came contiguously after the initial too-small chunk.
// Remove the initial chunk (since we have a cursor pointing to it already)
// and "merge" it into this `next_chunk`.
let _removed_initial_chunk = cursor_mut.remove();
// trace!("Frame allocator: removed suitably-large contiguous next {:?} after initial too-small {:?}", _removed_initial_chunk, chunk);
// Here, `cursor_mut` has been moved forward to point to the `next_chunk` now.
next_chunk.frames = FrameRange::new(*chunk.start(), *next_chunk.end());
return allocate_from_chosen_chunk(requested_frame, num_frames, &next_chunk, ValueRefMut::RBTree(cursor_mut));
}
}
}
}
}
}
Err(AllocationError::AddressNotFree(requested_frame, num_frames))
}
/// Searches the given `list` for any chunk large enough to hold at least `num_frames`.
fn find_any_chunk(
list: &mut StaticArrayRBTree<Chunk>,
num_frames: usize
) -> Result<(AllocatedFrames, DeferredAllocAction<'static>), AllocationError> {
// During the first pass, we ignore designated regions.
match list.0 {
Inner::Array(ref mut arr) => {
for elem in arr.iter_mut() {
if let Some(chunk) = elem {
// Skip chunks that are too-small or in the designated regions.
if chunk.size_in_frames() < num_frames || chunk.typ != MemoryRegionType::Free {
continue;
}
else {
return allocate_from_chosen_chunk(*chunk.start(), num_frames, &chunk.clone(), ValueRefMut::Array(elem));
}
}
}
}
Inner::RBTree(ref mut tree) => {
// Because we allocate new frames by peeling them off from the beginning part of a chunk,
// it's MUCH faster to start the search for free frames from higher addresses moving down.
// This results in an O(1) allocation time in the general case, until all address ranges are already in use.
let mut cursor = tree.upper_bound_mut(Bound::<&Chunk>::Unbounded);
while let Some(chunk) = cursor.get().map(|w| w.deref()) {
if num_frames <= chunk.size_in_frames() && chunk.typ == MemoryRegionType::Free {
return allocate_from_chosen_chunk(*chunk.start(), num_frames, &chunk.clone(), ValueRefMut::RBTree(cursor));
}
warn!("Frame allocator: inefficient scenario: had to search multiple chunks \
(skipping {:?}) while trying to allocate {} frames at any address.",
chunk, num_frames
);
cursor.move_prev();
}
}
}
error!("frame_allocator: non-reserved chunks are all allocated (requested {} frames). \
TODO: we could attempt to merge free chunks here.", num_frames
);
Err(AllocationError::OutOfAddressSpace(num_frames))
}
/// The final part of the main allocation routine that splits the given chosen chunk
/// into multiple smaller chunks, thereby "allocating" frames from it.
///
/// This function breaks up that chunk into multiple ones and returns an `AllocatedFrames`
/// from (part of) that chunk, ranging from `start_frame` to `start_frame + num_frames`.
fn allocate_from_chosen_chunk(
start_frame: Frame,
num_frames: usize,
chosen_chunk: &Chunk,
mut chosen_chunk_ref: ValueRefMut<Chunk>,
) -> Result<(AllocatedFrames, DeferredAllocAction<'static>), AllocationError> {
let (new_allocation, before, after) = split_chosen_chunk(start_frame, num_frames, chosen_chunk);
// Remove the chosen chunk from the free frame list.
let _removed_chunk = chosen_chunk_ref.remove();
// TODO: Re-use the allocated wrapper if possible, rather than allocate a new one entirely.
// if let RemovedValue::RBTree(Some(wrapper_adapter)) = _removed_chunk { ... }
Ok((
new_allocation.as_allocated_frames(),
DeferredAllocAction::new(before, after),
))
}
/// An inner function that breaks up the given chunk into multiple smaller chunks.
///
/// Returns a tuple of three chunks:
/// 1. The `Chunk` containing the requested range of frames starting at `start_frame`.
/// 2. The range of frames in the `chosen_chunk` that came before the beginning of the requested frame range.
/// 3. The range of frames in the `chosen_chunk` that came after the end of the requested frame range.
fn split_chosen_chunk(
start_frame: Frame,
num_frames: usize,
chosen_chunk: &Chunk,
) -> (Chunk, Option<Chunk>, Option<Chunk>) {
// The new allocated chunk might start in the middle of an existing chunk,
// so we need to break up that existing chunk into 3 possible chunks: before, newly-allocated, and after.
//
// Because Frames and PhysicalAddresses use saturating add/subtract, we need to double-check that
// we don't create overlapping duplicate Chunks at either the very minimum or the very maximum of the address space.
let new_allocation = Chunk {
typ: chosen_chunk.typ,
// The end frame is an inclusive bound, hence the -1. Parentheses are needed to avoid overflow.
frames: FrameRange::new(start_frame, start_frame + (num_frames - 1)),
};
let before = if start_frame == MIN_FRAME {
None
} else {
Some(Chunk {
typ: chosen_chunk.typ,
frames: FrameRange::new(*chosen_chunk.start(), *new_allocation.start() - 1),
})
};
let after = if new_allocation.end() == &MAX_FRAME {
None
} else {
Some(Chunk {
typ: chosen_chunk.typ,
frames: FrameRange::new(*new_allocation.end() + 1, *chosen_chunk.end()),
})
};
// some sanity checks -- these can be removed or disabled for better performance
if let Some(ref b) = before {
assert!(!new_allocation.contains(b.end()));
assert!(!b.contains(new_allocation.start()));
}
if let Some(ref a) = after {
assert!(!new_allocation.contains(a.start()));
assert!(!a.contains(new_allocation.end()));
}
(new_allocation, before, after)
}
/// Returns whether the given `Frame` is contained within the given `list`.
fn frame_is_in_list(
list: &StaticArrayRBTree<Chunk>,
frame: &Frame,
) -> bool {
match &list.0 {
Inner::Array(ref arr) => {
for chunk in arr.iter().flatten() {
if chunk.contains(frame) {
return true;
}
}
}
Inner::RBTree(ref tree) => {
let cursor = tree.upper_bound(Bound::Included(frame));
if let Some(chunk) = cursor.get().map(|w| w.deref()) {
if chunk.contains(frame) {
return true;
}
}
}
}
false
}
/// Adds the given `frames` to the given `list` as a Chunk of reserved frames.
///
/// Returns the range of **new** frames that were added to the list,
/// which will be a subset of the given input `frames`.
///
/// Currently, this function adds no new frames at all if any frames within the given `frames` list
/// overlap any existing regions at all.
/// TODO: handle partially-overlapping regions by extending existing regions on either end.
fn add_reserved_region(
list: &mut StaticArrayRBTree<Chunk>,
frames: FrameRange,
) -> Result<FrameRange, &'static str> {
// Check whether the reserved region overlaps any existing regions.
match &mut list.0 {
Inner::Array(ref mut arr) => {
for chunk in arr.iter().flatten() {
if let Some(_overlap) = chunk.overlap(&frames) {
// trace!("Failed to add reserved region {:?} due to overlap {:?} with existing chunk {:?}",
// frames, _overlap, chunk
// );
return Err("Failed to add reserved region that overlapped with existing reserved regions (array).");
}
}
}
Inner::RBTree(ref mut tree) => {
let mut cursor_mut = tree.upper_bound_mut(Bound::Included(frames.start()));
while let Some(chunk) = cursor_mut.get().map(|w| w.deref()) {
if chunk.start() > frames.end() {
// We're iterating in ascending order over a sorted tree,
// so we can stop looking for overlapping regions once we pass the end of the new frames to add.
break;
}
if let Some(_overlap) = chunk.overlap(&frames) {
// trace!("Failed to add reserved region {:?} due to overlap {:?} with existing chunk {:?}",
// frames, _overlap, chunk
// );
return Err("Failed to add reserved region that overlapped with existing reserved regions (RBTree).");
}
cursor_mut.move_next();
}
}
}
list.insert(Chunk {
typ: MemoryRegionType::Reserved,
frames: frames.clone(),
}).map_err(|_c| "BUG: Failed to insert non-overlapping frames into list.")?;
Ok(frames)
}
/// The core frame allocation routine that allocates the given number of physical frames,
/// optionally at the requested starting `PhysicalAddress`.
///
/// This simply reserves a range of frames; it does not perform any memory mapping.
/// Thus, the memory represented by the returned `AllocatedFrames` isn't directly accessible
/// until you map virtual pages to them.
///
/// Allocation is based on a red-black tree and is thus `O(log(n))`.
/// Fragmentation isn't cleaned up until we're out of address space, but that's not really a big deal.
///
/// # Arguments
/// * `requested_paddr`: if `Some`, the returned `AllocatedFrames` will start at the `Frame`
/// containing this `PhysicalAddress`.
/// If `None`, the first available `Frame` range will be used, starting at any random physical address.
/// * `num_frames`: the number of `Frame`s to be allocated.
///
/// # Return
/// If successful, returns a tuple of two items:
/// * the frames that were allocated, and
/// * an opaque struct representing details of bookkeeping-related actions that may cause heap allocation.
/// Those actions are deferred until this returned `DeferredAllocAction` struct object is dropped,
/// allowing the caller (such as the heap implementation itself) to control when heap allocation may occur.
pub fn allocate_frames_deferred(
requested_paddr: Option<PhysicalAddress>,
num_frames: usize,
) -> Result<(AllocatedFrames, DeferredAllocAction<'static>), &'static str> {
if num_frames == 0 {
warn!("frame_allocator: requested an allocation of 0 frames... stupid!");
return Err("cannot allocate zero frames");
}
if let Some(paddr) = requested_paddr {
let start_frame = Frame::containing_address(paddr);
let end_frame = start_frame + (num_frames - 1);
// Try to allocate the frames at the specific address.
let mut free_reserved_frames_list = FREE_RESERVED_FRAMES_LIST.lock();
if let Ok(success) = find_specific_chunk(&mut free_reserved_frames_list, start_frame, num_frames) {
Ok(success)
} else {
// If allocation failed, then the requested `start_frame` may be found in the general-purpose list
// or may represent a new, previously-unknown reserved region that we must add.
// We first attempt to allocate it from the general-purpose free regions.
if let Ok(result) = find_specific_chunk(&mut FREE_GENERAL_FRAMES_LIST.lock(), start_frame, num_frames) {
Ok(result)
}
// If we failed to allocate the requested frames from the general list,
// we can add a new reserved region containing them,
// but ONLY if those frames are *NOT* in the general-purpose region.
else if {
let g = GENERAL_REGIONS.lock();
!frame_is_in_list(&g, &start_frame) && !frame_is_in_list(&g, &end_frame)
} {
let frames = FrameRange::new(start_frame, end_frame);
let new_reserved_frames = add_reserved_region(&mut RESERVED_REGIONS.lock(), frames)?;
// If we successfully added a new reserved region,
// then add those frames to the actual list of *available* reserved regions.
let _new_free_reserved_frames = add_reserved_region(&mut free_reserved_frames_list, new_reserved_frames.clone())?;
assert_eq!(new_reserved_frames, _new_free_reserved_frames);
find_specific_chunk(&mut free_reserved_frames_list, start_frame, num_frames)
}
else {
Err(AllocationError::AddressNotFree(start_frame, num_frames))
}
}
} else {
find_any_chunk(&mut FREE_GENERAL_FRAMES_LIST.lock(), num_frames)
}.map_err(From::from) // convert from AllocationError to &str
}
/// Similar to [`allocated_frames_deferred()`](fn.allocate_frames_deferred.html),
/// but accepts a size value for the allocated frames in number of bytes instead of number of frames.
///
/// This function still allocates whole frames by rounding up the number of bytes.
pub fn allocate_frames_by_bytes_deferred(
requested_paddr: Option<PhysicalAddress>,
num_bytes: usize,
) -> Result<(AllocatedFrames, DeferredAllocAction<'static>), &'static str> {
let actual_num_bytes = if let Some(paddr) = requested_paddr {
num_bytes + (paddr.value() % FRAME_SIZE)
} else {
num_bytes
};
let num_frames = (actual_num_bytes + FRAME_SIZE - 1) / FRAME_SIZE; // round up
allocate_frames_deferred(requested_paddr, num_frames)
}
/// Allocates the given number of frames with no constraints on the starting physical address.
///
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames(num_frames: usize) -> Option<AllocatedFrames> {
allocate_frames_deferred(None, num_frames)
.map(|(af, _action)| af)
.ok()
}
/// Allocates frames with no constraints on the starting physical address,
/// with a size given by the number of bytes.
///
/// This function still allocates whole frames by rounding up the number of bytes.
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames_by_bytes(num_bytes: usize) -> Option<AllocatedFrames> {
allocate_frames_by_bytes_deferred(None, num_bytes)
.map(|(af, _action)| af)
.ok()
}
/// Allocates frames starting at the given `PhysicalAddress` with a size given in number of bytes.
///
/// This function still allocates whole frames by rounding up the number of bytes.
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames_by_bytes_at(paddr: PhysicalAddress, num_bytes: usize) -> Result<AllocatedFrames, &'static str> {
allocate_frames_by_bytes_deferred(Some(paddr), num_bytes)
.map(|(af, _action)| af)
}
/// Allocates the given number of frames starting at (inclusive of) the frame containing the given `PhysicalAddress`.
///
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames_at(paddr: PhysicalAddress, num_frames: usize) -> Result<AllocatedFrames, &'static str> {
allocate_frames_deferred(Some(paddr), num_frames)
.map(|(af, _action)| af)
}
/// Converts the frame allocator from using static memory (a primitive array) to dynamically-allocated memory.
///
/// Call this function once heap allocation is available.
/// Calling this multiple times is unnecessary but harmless, as it will do nothing after the first invocation.
#[doc(hidden)]
pub fn convert_to_heap_allocated() {
FREE_GENERAL_FRAMES_LIST.lock().convert_to_heap_allocated();
FREE_RESERVED_FRAMES_LIST.lock().convert_to_heap_allocated();
GENERAL_REGIONS.lock().convert_to_heap_allocated();
RESERVED_REGIONS.lock().convert_to_heap_allocated();
}
/// A debugging function used to dump the full internal state of the frame allocator.
#[doc(hidden)]
pub fn dump_frame_allocator_state() {
debug!("----------------- FREE GENERAL FRAMES ---------------");
FREE_GENERAL_FRAMES_LIST.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
debug!("----------------- FREE RESERVED FRAMES --------------");
FREE_RESERVED_FRAMES_LIST.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
debug!("------------------ GENERAL REGIONS -----------------");
GENERAL_REGIONS.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
debug!("------------------ RESERVED REGIONS -----------------");
RESERVED_REGIONS.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
}