1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
//! An asynchronous channel for Inter-Task Communication (ITC) with an internal queue for buffering messages.
//!
//! This crate offers an asynchronous channel that allows multiple tasks
//! to exchange messages through the use of a bounded-capacity intermediate buffer.
//! Unlike the `rendezvous` channel, the sender and receiver do not need to rendezvous to send or receive data.
//!
//! Only `Send` types can be sent or received through the channel.
//!
//! This is not a zero-copy channel;
//! to avoid copying large messages, use a reference (layer of indirection) like `Box`.
#![no_std]
extern crate alloc;
#[macro_use] extern crate static_assertions;
#[cfg(trace_channel)] #[macro_use] extern crate log;
#[cfg(trace_channel)] #[macro_use] extern crate debugit;
extern crate wait_queue;
extern crate mpmc;
extern crate crossbeam_utils;
#[cfg(downtime_eval)]
extern crate hpet;
#[cfg(downtime_eval)]
extern crate task;
use alloc::sync::Arc;
use mpmc::Queue as MpmcQueue;
use wait_queue::WaitQueue;
use crossbeam_utils::atomic::AtomicCell;
/// Create a new channel that allows senders and receivers to
/// asynchronously exchange messages via an internal intermediary buffer.
///
/// This channel's buffer has a bounded capacity of minimum size 2 messages,
/// and it must be a power of 2 due to the restrictions of the current MPMC queue type that is used.
/// The given `minimum_capacity` will be rounded up to the next largest power of 2, with a minimum value of 2.
///
/// When the number of pending (buffered) messages is larger than the capacity,
/// the channel is considered full.
/// Depending on whether a non-blocking or blocking send function is invoked,
/// future attempts to send another message will either block or return a `Full` error
/// until the channel's buffer is drained by a receiver and space in the buffer becomes available.
///
/// Returns a tuple of `(Sender, Receiver)`.
pub fn new_channel<T: Send>(minimum_capacity: usize) -> (Sender<T>, Receiver<T>) {
let channel = Arc::new(Channel::<T> {
queue: MpmcQueue::with_capacity(minimum_capacity),
waiting_senders: WaitQueue::new(),
waiting_receivers: WaitQueue::new(),
channel_status: AtomicCell::new(ChannelStatus::Connected)
});
(
Sender { channel: channel.clone() },
Receiver { channel: channel }
)
}
/// Indicates whether channel is Connected or Disconnected
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ChannelStatus {
/// Channel is working. Initially channel is created with Connected status.
Connected,
/// Set to Disconnected when Sender end is dropped.
SenderDisconnected,
/// Set to Disconnected when Receiver end is dropped.
ReceiverDisconnected,
}
/// Error type for tracking different type of errors sender and receiver
/// can encounter.
#[derive(Debug, PartialEq)]
pub enum ChannelError {
/// Occurs when `try_receive` is performed on an empty channel
ChannelEmpty,
/// Occurs when `try_send` is performed on a full channel
ChannelFull,
/// Occurs when one end of channel is dropped
ChannelDisconnected,
/// Occurs when an error occur in `WaitQueue`
WaitError(wait_queue::WaitError)
}
/// The inner channel for asynchronous communication between `Sender`s and `Receiver`s.
///
/// This struct is effectively a wrapper around a MPMC queue
/// with waitqueues for senders (producers) and receivers (consumers).
///
/// This channel object is not Send/Sync or cloneable itself;
/// it can be shared across tasks using an `Arc`.
struct Channel<T: Send> {
queue: MpmcQueue<T>,
waiting_senders: WaitQueue,
waiting_receivers: WaitQueue,
channel_status: AtomicCell<ChannelStatus>
}
// Ensure that `AtomicCell<ChannelStatus>` is actually a lock-free atomic.
const_assert!(AtomicCell::<ChannelStatus>::is_lock_free());
impl <T: Send> Channel<T> {
/// Returns true if the channel is disconnected.
#[inline(always)]
fn is_disconnected(&self) -> bool {
self.get_channel_status() != ChannelStatus::Connected
}
/// Returns the channel Status
#[inline(always)]
fn get_channel_status(&self) -> ChannelStatus {
self.channel_status.load()
}
}
/// The sender (transmit) side of a channel.
#[derive(Clone)]
pub struct Sender<T: Send> {
channel: Arc<Channel<T>>,
}
impl <T: Send> Sender<T> {
/// Send a message, blocking until space in the channel's buffer is available.
///
/// Returns `Ok(())` if the message was sent successfully,
/// otherwise returns an error of `ChannelError` type.
pub fn send(&self, msg: T) -> Result<(), ChannelError> {
#[cfg(trace_channel)]
trace!("async_channel: sending msg: {:?}", debugit!(msg));
// Fast path: attempt to send the message, assuming the buffer isn't full
let msg = match self.try_send(msg) {
// if successful return ok
Ok(()) => return Ok(()),
// if unsunccessful check whether it fails due to any other reason than channel being full
Err((returned_msg, channel_error)) => {
if channel_error != ChannelError::ChannelFull {
return Err(channel_error);
}
returned_msg
},
};
// Slow path: the buffer was full, so now we need to block until space becomes available.
// The code can move to this point only if fast path failed due to channel being full
// trace!("waiting for space to send...");
// Here we use an option to store the un-sent message outside of the `closure`
// so that we can repeatedly try to re-send it upon the next invocation of the `closure`
// (which happens when this sender task is notified in the future).
let mut msg = Some(msg);
// This closure is invoked from within a locked context, so we cannot just call `try_send()` here
// because it will notify the receivers which can cause deadlock.
// Therefore, we need to perform the nofity action outside of this closure after it returns.
let mut closure = || {
let owned_msg = msg.take();
let result = owned_msg.and_then(|m| match self.channel.queue.push(m) {
Ok(()) => {
// trace!("Sending in closure");
// We wrap the result in Some() since `wait_until` progresses only when `Some` is returned.
Some(Ok(()))
},
Err(returned_msg) => {
// Here: we (the sender) woke up and failed to send,
// so we save the returned message outside of the closure to retry later.
// trace!("try_send() failed, saving message {:?} for next retry.", debugit!(returned_msg));
msg = Some(returned_msg);
None
}
});
if self.channel.is_disconnected() {
// trace!("Receiver Endpoint is dropped");
// Here the receiver end has dropped.
// So we don't wait anymore in the waitqueue
Some(Err(ChannelError::ChannelDisconnected))
} else {
result
}
};
// When `wait_until_mut` returns it can be either a successful send marked as Ok(Ok()),
// Error in the condition (channel disconnection) marked as Ok(Err()),
// or the wait_until runs into error (Err())
let res = match self.channel.waiting_senders.wait_until_mut(&mut closure) {
Ok(r) => r,
Err(wait_error) => Err(ChannelError::WaitError(wait_error)),
};
// trace!("... sending space became available.");
// If we successfully sent a message, we need to notify any waiting receivers.
// As stated above, to avoid deadlock, this must be done here rather than in the above closure.
if res.is_ok() {
// trace!("successful send() is notifying receivers.");
self.channel.waiting_receivers.notify_one();
}
res
}
/// Tries to send the message, only succeeding if buffer space is available.
///
/// If no buffer space is available, it returns the `msg` with `ChannelError` back to the caller without blocking.
pub fn try_send(&self, msg: T) -> Result<(), (T, ChannelError)> {
// first we'll check whether the channel is active
match self.channel.get_channel_status() {
ChannelStatus::SenderDisconnected => {
self.channel.channel_status.store(ChannelStatus::Connected);
},
ChannelStatus::ReceiverDisconnected => {
return Err((msg, ChannelError::ChannelDisconnected));
},
_ => {},
}
// Injected Randomized fault : Page fault
#[cfg(downtime_eval)]
{
let value = hpet::get_hpet().as_ref().unwrap().get_counter();
// debug!("Value {} {}", value, value % 1024);
match task::get_my_current_task() {
Some(curr_task) => {
// We restrict the fault to a specific task to make measurements consistent
if (value % 4096) == 0 && curr_task.is_restartable() {
// debug!("Fake error {}", value);
unsafe { *(0x5050DEADBEEF as *mut usize) = 0x5555_5555_5555; }
}
},
_ => (),
}
}
match self.channel.queue.push(msg) {
// successfully sent
Ok(()) => {
// trace!("successful try_send() is notifying receivers.");
self.channel.waiting_receivers.notify_one();
Ok(())
}
// queue was full, return message back to caller
Err(returned_msg) => Err((returned_msg, ChannelError::ChannelFull)),
}
}
/// Returns true if the channel is disconnected.
pub fn is_disconnected(&self) -> bool {
self.channel.is_disconnected()
}
}
/// The receiver side of a channel.
#[derive(Clone)]
pub struct Receiver<T: Send> {
channel: Arc<Channel<T>>,
}
impl <T: Send> Receiver<T> {
/// Receive a message, blocking until a message is available in the buffer.
///
/// Returns the message if it was received properly, otherwise returns an error of `ChannelError` type.
pub fn receive(&self) -> Result<T, ChannelError> {
// trace!("async_channel: receive() entry");
// Fast path: attempt to receive a message, assuming the buffer isn't empty
// The code progresses beyond this match only if try_receive fails due to
// empty channel
match self.try_receive() {
Err(ChannelError::ChannelEmpty) => {},
x => {
#[cfg(trace_channel)]
trace!("async_channel: received msg: {:?}", debugit!(x));
return x;
}
};
// Slow path: the buffer was empty, so we need to block until a message is sent.
// trace!("waiting to receive a message...");
// This closure is invoked from within a locked context, so we cannot just call `try_receive()` here
// because it will notify the receivers which can cause deadlock.
// Therefore, we need to perform the nofity action outside of this closure after it returns
// Closure would output the message if received or an error if channel is disconnected.
// It would output `None` if neither happens, resulting in waiting in the queue.
let closure = || {
match self.channel.queue.pop() {
Some(msg) => Some(Ok(msg)),
_ => {
if self.channel.is_disconnected() {
Some(Err(ChannelError::ChannelDisconnected))
} else {
None
}
},
}
};
// When wait returns it can be either a successful receiver marked as Ok(Ok(msg)),
// Error in wait condition marked as Ok(Err(error)),
// or the wait_until runs into error (Err())
let res = match self.channel.waiting_receivers.wait_until(& closure) {
Ok(Ok(x)) => Ok(x),
Ok(Err(error)) => Err(error),
Err(wait_error) => Err(ChannelError::WaitError(wait_error)),
};
// trace!("... received msg.");
// If we successfully received a message, we need to notify any waiting senders.
// As stated above, to avoid deadlock, this must be done here rather than in the above closure.
if let Ok(ref _msg) = res {
// trace!("async_channel: successful receive() is notifying senders.");
self.channel.waiting_senders.notify_one();
}
#[cfg(trace_channel)]
trace!("async_channel: received msg: {:?}", debugit!(res));
res
}
/// Tries to receive a message, only succeeding if a message is already available in the buffer.
///
/// If receive succeeds returns `Some(Ok(T))`.
/// If an endpoint is disconnected returns `Some(Err(ChannelStatus::Disconnected))`.
/// If no such message exists, it returns `None` without blocking
pub fn try_receive(&self) -> Result<T, ChannelError> {
if let Some(msg) = self.channel.queue.pop() {
// trace!("successful try_receive() is notifying senders.");
self.channel.waiting_senders.notify_one();
Ok(msg)
} else {
// We check whther the channel is disconnected
match self.channel.get_channel_status() {
ChannelStatus::ReceiverDisconnected => {
self.channel.channel_status.store(ChannelStatus::Connected);
Err(ChannelError::ChannelEmpty)
},
ChannelStatus::SenderDisconnected => {
Err(ChannelError::ChannelDisconnected)
},
_ => {
Err(ChannelError::ChannelEmpty)
},
}
}
}
/// Returns true if the channel is disconnected.
pub fn is_disconnected(&self) -> bool {
self.channel.is_disconnected()
}
}
/// Drop implementation marks the channel state and notifys the `Sender`
impl<T: Send> Drop for Receiver<T> {
fn drop(&mut self) {
// trace!("Dropping the receiver");
self.channel.channel_status.store(ChannelStatus::ReceiverDisconnected);
self.channel.waiting_senders.notify_one();
}
}
/// Drop implementation marks the channel state and notifys the `Receiver`
impl<T: Send> Drop for Sender<T> {
fn drop(&mut self) {
// trace!("Dropping the sender");
self.channel.channel_status.store(ChannelStatus::SenderDisconnected);
self.channel.waiting_receivers.notify_one();
}
}